
Evaluation and Implementation of a Just-In-Time
Bed-Assignment Strategy to Reduce Wait Times for

Surgical Inpatients

Aleida Braaksma
⇤
, Martin S. Copenhaver

†§
, Ana C. Zenteno

†
,

Elizabeth Ugarph
⇤
, Retsef Levi

⇤
, Bethany J Daily

†
,

Benjamin Orcutt
†
, Kathryn M Turcotte

†
, and Peter F. Dunn

†§

⇤Sloan School of Management, Massachusetts Institute of Technology
†Massachusetts General Hospital

§Harvard Medical School

Abstract

Early bed assignments of elective surgical patients can be a useful planning tool for
hospital sta↵; they provide certainty in patient placement and allow nursing sta↵ to
prepare for patients’ arrivals to the unit. However, given the variability in the surgical
schedule, they can also result in timing mismatches—beds remain empty while their
assigned patients are still in surgery, while other ready-to-move patients are waiting
for their beds to become available. In this study, we used data from four surgical
units in a large academic medical center to build a discrete-event simulation with
which we show how a Just-In-Time (JIT) bed assignment, in which ready-to-move pa-
tients are assigned to ready-beds, would decrease bed idle time and increase access to
general care beds for all surgical patients. Additionally, our simulation demonstrates
the potential synergistic e↵ects of combining the JIT assignment policy with a strat-
egy that co-locates short-stay surgical patients out of inpatient beds, increasing the
bed supply. The simulation results motivated hospital leadership to implement both
strategies across these four surgical inpatient units in early 2017. In the several months
post-implementation, the average patient wait time decreased 25.0% overall, driven by
decreases of 32.9% for ED-to-floor transfers (from 3.66 to 2.45 hours on average) and
37.4% for PACU-to-floor transfers (from 2.36 to 1.48 hours), the two major sources of
admissions to the surgical floors, without adding additional capacity.
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1 Introduction

Hospital inpatient bed assignment is an intricate supply-and-demand process. As ad-
missions occur throughout the day, clinicians place “bed requests” (or “bed orders”) so
that patients can be matched to a bed that fits their clinical needs (“bed assignment”).
On the other hand, bed managers heavily depend on clinical teams to learn which
beds will become available as discharges occur. As they gather this information, bed
managers must decide when to make patient-to-bed assignments in a timely fashion,
an increasingly challenging task at large hospitals which regularly operate at or near
maximum capacity.

In this work, we study the impact of two bed placement strategies on access to
general care inpatient beds for surgical patients at a large academic medical center,
Massachusetts General Hospital (MGH), which sta↵s over 1,000 beds. We study how
proactive bed-assignment strategies can contribute to extended patient wait times for
beds and how they can be modified, using manufacturing principles, to reduce patients’
wait times for beds and thus reduce congestion in the Emergency Department (ED) and
the Post-Anesthesia Care Unit (PACU), a high priority for a hospital whose operational
bed occupancy consistently hovered above 90% at that time. Lastly, we estimate
how this benefit is compounded when combining it with strategic changes in the care
pathways of short-stay surgical patients.

1.1 Motivation

Data from 2015 showed how early bed assignments could lead to a timing mismatch
between patient readiness to move and bed availability. Each morning, nursing sta↵
would review the surgical planned admissions for the day and pre-assign patients to
beds regardless of the timing of the surgical schedule. This reassured the teams that all
incoming patients who needed a bed would get one by the end of the day and gave them
time to assign specific sta↵ to each patient. This process also allowed bed managers
to make intricate bed assignments before the natural pressures of the day built up.
Indeed, the bed assignment process is further complicated at this hospital since it has
a large share of two-person semiprivate (i.e., shared) patient rooms, which adds the
need to guarantee compatibility with a roommate’s gender and infection precautions
for each bed request. A bed was considered available for assignment if it was empty,
or if the patient occupying it had been identified by nursing as “pending discharge,”
i.e., expected to be discharged at some point that day.

This practice frequently resulted in situations where post-operative patients were
waiting for pre-assigned beds that were still occupied, while an equivalent bed was idle
“waiting” for its pre-assigned patient to finish their perioperative course. Specifically,
in 2015, pre-assigned beds in twelve units (314 surgical beds) were idle “waiting” for
patients for a total of 11,181 hours or 466 bed-days, a↵ecting 3,284 (53%) of post-
operative patients waiting for a general care bed.

This analysis led us to propose a Just-In-Time (JIT) bed-assignment strategy. JIT
aims to provide fabricated parts into assemblies only when they are ready, avoiding
delivery before it is needed, sitting idle and gathering inventory costs [34]. We hy-
pothesized that an assignment process in which managers know the list of expected
admissions for the day, but only assign patients to beds closer to the time in which they
are ready to transfer, and only to beds that are ready to receive them, would reduce
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wait times. This is similar to the concept of delayed di↵erentiation in manufacturing:
by postponing the di↵erentiation of a product for a specific customer until the latest
possible point in the supply network, companies have been able to deliver more highly
customized products and services more quickly [13].

At that time, hospital leadership was considering implementing a di↵erent patient
flow strategy to increase access to beds and reduce upstream congestion: surgical
short-stay elective patients (SSE), those who typically require at most 23 hours of
post-procedure recovery, would recover overnight in the PACU by default (instead
of on a general care floor) unless the patient’s care team deemed that they required
an extended stay, in which case they would be transferred to a general care floor.
(Note that SSE patients have their case booked under a separate booking category to
distinguish them from other scheduled surgical patients.)

We hypothesized that layering a JIT bed assignment on top of this change in patient
flow would help to make the best use of the additional available beds. Finally, we also
proposed to pool units of clinically similar floors, increasing the availability of potential
beds patients that could go to as their bed requests were placed. To gauge the benefits
of each strategy and motivate hospital leadership for a potential implementation, we
built a detailed discrete-event simulation that emulated the bed-assignment process
and bed occupancy in four high-volume surgical floors that could serve as a model for
implementation across the rest of the surgical floors.

1.2 Literature Review

The practice of pre-assigning patients to beds is relatively common in the operations
research literature. In fact, the majority of literature on optimizing patient-to-bed
assignments designates elective patients to beds with a significant lead-time: some
pre-assign beds for the upcoming weeks assuming patients’ length-of-stay to be known
beforehand [2, 5, 6, 11, 32], while others do so the day before patients are scheduled
to arrive [7, 8, 45]. Multiple studies propose deciding on patient-to-bed assignments at
multiple, specific times each day [15, 23, 35, 33], most of which truly study a real-time
setting, where assignments are made instantaneously when and only when both patient
and bed are ready. In terms of their applicability to practice, several of these studies
[2, 6, 7, 8, 11, 32, 45] test their developed methodology with computer simulations,
while others [5, 15, 23, 35, 33] test on data from actual hospitals. Only Thomas
et al. [39] and Thompson et al. [40] report on actual implementations. In both
cases, at Mount Sinai Medical Center (a 1171-bed tertiary care teaching hospital), and
at Windham Hospital (a 130-bed acute care community hospital), assignments were
decided periodically—every hour [39] or every eight hours [40]—for multiple patients
and beds simultaneously.

Systematic changes to the bed-assignment process are not as common in the clin-
ical literature. Research in this area typically focuses on process improvement e↵orts
to streamline the bed-request process, particularly for newly admitted patients from
the ED. These e↵orts include increasing collaboration between stakeholders to reduce
rejections [37], having a direct involvement from leadership [29], or increasing data
transparency [9, 10, 21]. Most clinical work related to decrease wait times in up-
stream locations focuses on di↵erent mechanisms to increase bed availability via in-
creasing early-morning discharges or smoothing out discharges throughout the week
[4, 21, 43, 41]. Other strategies include changing bed-demand patterns by optimiz-

3



ing the operating room schedules [12, 44] and changing intensive care unit capacity
management strategies [26]. Finally, we note that there is a vast literature on the as-
sociation between long wait times and worse patient outcomes, especially for patients
in the ED (see [20] and references therein).

Regarding short-stay patients, standardized, separate care pathways are most com-
monly found within the ED. Patients who are expected to need monitoring for less than
23 hours are sometimes placed in highly protocolized ED Observation units, whose fis-
cal and patient flow benefits are well studied [3, 30]. In the surgical space, literature
is not as vast, but focused pathways have been shown to decrease length-of-stay by
increasing discharge e�ciencies and increasing bed availability [42, 36].

Our work follows a similar approach taken by Hiltrop [16] who evaluated (though
did not implement) a Just-In-Time bed-assignment policy together with early daily
discharges in a set of units with private rooms only. In contrast, the units we focus
on primarily have semi-private rooms (with cohorting requirements), and therefore we
believed it was important to create a detailed simulation model given that the relative
benefits of a JIT policy under cohorting restrictions are not clear a priori. To the best
of our knowledge, there are no previous reports documenting the implementation of a
real-time bed-assignment strategy which, coupled with changes in care pathways for
short-stay patients, proved to be particularly e↵ective at increasing access to general
care floor beds.

2 Methodology

In this section we describe the bed request processes, the data sources that we used
to build the simulation model, the metrics that we used to assess the e↵ectiveness of
our proposed interventions, and the simulation we used to test the proposed strategies.
Note that this research was conducted under supervision of Mass General Brigham’s
Institutional Review Board (protocol 2011P001124).

2.1 Bed Request Process

Bed requests to floors originate from five di↵erent sources: the Post-Anesthesia Care
Unit (PACU, where patients recover from anesthesia after surgery), the ED, Inten-
sive Care Units (ICUs), other inpatient floors, and “direct” admissions (non-operative
scheduled admissions and hospital transfers). In the PACU there are mainly two types
of patients who need beds: elective patients, who come from home for their surgery
and need a “new” bed, and non-elective patients, who had been admitted to the hos-
pital prior to surgery (mostly via the ED) and usually go back to the bed they were
in before. It is the former group which creates the largest demand for surgical beds on
non-holiday weekdays (see Table 1). Notably, all bed requests are generated based on
a clinical team’s assessment of a patient, except for elective surgical patients, whose
bed requests are generated automatically upon checking in for surgery. It was the
availability of these bed requests in the electronic medical record system early in the
day that enabled the workflow of assigning beds to patients even if their surgery had
not started yet.

We hypothesized that the use of a Just-In-Time (JIT) bed assignment would allow a
timelier matching between bed demand and supply. To assess the potential e↵ectiveness
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of this strategy, we initially focused our analysis on four high-volume, largely self-
contained surgical floors at MGH: two floors specialized in General Surgery, Surgical
Oncology, and Trauma and Emergency Surgery (with 36 and 27 beds), and two floors
specialized in Orthopedics, the first of which also hosts Urology (with 36 and 30 beds).
We built and validated a detailed patient flow simulation model of these floors and
their bed-request interactions with the sources cited above.

2.2 Data

We linked seven data sets to build the patient flow simulation model:

1. Bed requests: contains all historical bed-request and -assignment timestamps, as
well as pending-discharge timestamps;

2. Surgical cases: has patients’ surgery information, including whether cases are
elective and whether they are expected to be short-stay; it also contains relevant
timestamps in the perioperative environment, including when patients arrived in
the PACU, anesthesia recovery timestamps, and when they left the unit;

3. Inpatient admissions, discharges, and transfers (ADT): contains all the times-
tamps that detail patient movement on the surgical floors of interest (and the
rest of the hospital), including the time stamps of when a patient arrived in and
left a specific bed;

4. Bed cleaning : has the time stamps of when beds were cleaned and thus were
ready to receive the next patient;

5. Bed closures : contains information on when beds were closed and thus unavail-
able, including the reasons for closures (e.g., infection control in semiprivate
rooms, maintenance, sta�ng);

6. Patient infections : clinical patient-level data which limits cohorting in semipri-
vate rooms; and

7. Patient gender : self-explanatory; also limits cohorting.

In 2015 there were 10,771 bed requests into the four surgical floors of interest (see
Table 1): 6,204 from the PACU, 2,824 from the ED, 701 from ICUs, 180 transfers
from other inpatient floors at MGH, and 862 “direct” admissions to the floors. While
the simulation includes all calendar days in 2015, we restrict our analysis of several
key metrics to non-holiday weekdays since these are the days in which elective surgical
volume is highest and when the hospital is most congested. We note that SSE patients
represented 7.2% of the average daily admissions on non-holiday weekdays during that
time frame.
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Table 1: Average daily patient admissions by source and time period

Source
Simulation (2015) Pre Post Change, Pre vs. Post
Overall Weekdays Overall Weekdays Overall Weekdays Overall Weekdays

PACU 17.00 23.40 16.34 22.92 16.52 22.44
0.18 �0.48

[�1.96, 0.79] [�2.15, 1.14]

—non-SSE 15.21 20.85 13.98 19.57 15.12 20.51
1.14 0.94

[�1.31, 1.94] [�0.81, 2.54]

—SSE 1.79 2.56 2.37 3.35 1.40 1.93
�0 .97 �1 .42

[�1.60,�0.44] [�1.98,�0.62]

ED 7.74 7.15 6.80 6.53 7.84 7.53
1.05 1.00

[0.09, 1.98] [�0.05, 2.18]

Admissions 2.36 2.86 2.30 2.79 2.42 3.00
0.11 0.21

[�0.52, 0.57] [�0.45, 0.82]

ICU 1.92 1.72 1.59 1.37 1.58 1.40
�0.01 0.03

[�0.40, 0.46] [�0.51, 0.50]

Floor 0.49 0.51 0.41 0.43 0.21 0.24
�0.20 �0.19

[�0.47, 0.04] [�0.46, 0.14]

Overall 29.51 35.64 27.44 34.04 28.57 34.60
1.13 0.56

[�1.23, 1.86] [�1.36, 2.39]

Notes. “Weekdays” only includes non-holiday weekdays (Monday through Friday). “Pre” and
“Post” denote the pre- and post-implementation periods, respectively. Confidence intervals shown
are via an interrupted time series analysis; intervals which do not contain zero are bolded. Averages
for PACU-source patients are shown overall as well as broken down into two mutually exclusive
groups: SSE and non-SSE patients.
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2.3 Metrics

We used the following performance metrics to gauge the impact of the proposed inter-
ventions:

(a) Patients’ wait times for beds

(b) Beds’ idle time

(c) Daily admissions to floors

(d) Operational bed occupancy

We define a patient’s wait time for a bed as the interval between the moment a patient is
medically ready to transfer until an assigned bed has been cleaned and is thus ready to
receive the patient; this excludes hand-o↵ and transportation times. This is the study’s
primary metric of interest as it is directly linked with quality of care and upstream
congestion. Similarly, we define a bed’s idle time as the period between when a clean
bed is assigned to a patient until the time that patient is medically ready to transfer
to the bed. A visual representation of these metrics is shown in Figure 1.

While (a) is the primary metric of interest, metric (b) allows us to capture how long
beds are not physically occupied despite having already been assigned to a patient. This
is a reflection of how well timed the bed-assignment process is. Suppose there are two
similar patients that could go to the same ready-bed, with one of them still undergoing
surgery while the second one is ready to transfer. If the bed is assigned to the former,
the first patient will have a very short wait time, but the bed could sit idle potentially
for a long time while both the latter patient’s wait time and the bed’s idle time could
have been shortened. Formally, bed-idle time occurs when a ready-bed is assigned to a
patient who is not medically ready to transfer. We measure both the sum of the total
hours that beds were idle and the total number of such assignments per day.

Figure 1: Three example timelines of possible bed-assignment events, illustrating patients’

wait time for beds and beds’ idle time. In Examples 1 and 3, there is zero bed-idle time,

while in Example 2, there is zero patient wait time.

Bed request Bed assigned Patient medically ready Bed clean

Patient wait time

Bed request Bed assigned Bed clean Patient medically ready

Bed-idle time

Bed request Patient medically ready Bed assigned Bed clean

Patient wait time

1The number of daily admissions, as the name suggests, reflects the total number of
new patients that arrive in the four units of interest per day from di↵erent locations
across the hospital. Finally, to calculate operational bed occupancy, we divide the
11:59pm total patient census on the four floors by the number of operational beds
(physical capacity minus any closed beds). The two last metrics serve as a control, to
dissect whether there were significant changes in bed supply and demand.
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2.4 Simulation Model and Scenarios

In this section, we describe our simulation approach and the simulation scenarios we
assessed; we describe the simulation validation and details on the patient flow modeling
assumptions in the Supplementary Material. We used python’s simpy framework [38]
to create a discrete-event simulation that emulated the bed-assignment process with
historical data from 2015 and then modeled how patient wait times would change under
a JIT bed-assignment process. This is a non-trivial task for several reasons:

i) historical bed-assignment rules were not standardized nor documented, i.e., while
bed managers generally assigned beds to patients who had been waiting the
longest, specific patients or specific areas of the hospital could be prioritized
depending on the needs of the moment;

ii) 116 out of 129 beds (90%) in the four floors of interest are semiprivate, making
modeling of bed closures, bed swaps (i.e., moving a patient to another bed in
the same floor), and dynamic patient infection status critical to generate realistic
results; and

iii) we had to link multiple data sources, some of which were not fully populated or
not always easy to match.

Base scenario. In the base scenario, patients needed to be assigned to a bed
on the same floor that they were historically assigned. Since the historical rules for
prioritization were not standardized, the model prioritized patients for assignment
based on the order that they were historically assigned. All patients could be assigned
to “pending discharge” beds (beds in which the current patient is indicated as leaving
at some time later that day), and bed assignments for elective surgical patients could
begin as soon as their bed requests had been generated (i.e., before their surgeries).

JIT strategy. We modeled JIT by following the principle of “only ready patients
can be assigned to ready beds.” “Ready patients” means that patients are not consid-
ered for assignment to beds until they are deemed medically ready to leave the care
area whence they are transferring to the floor. This is represented by the time of their
bed request for all areas except the PACU. For the PACU, given that elective surgical
patients’ bed requests are generated before their surgical procedures begin, we consider
these patients to be medically ready at the earliest of i) two hours after their arrival
to the PACU (following surgery) and ii) the timestamp recorded by nursing indicating
their medical readiness to transfer. The two-hour threshold was set by nursing and
physician leaders, as the medical readiness timestamps were not reliably available for
that period. “Ready beds” means that beds are available for assignment only after
they become empty (not necessarily clean), and not when they are labeled “pending
discharge.”

Pooling strategy. In addition to JIT, we also evaluated the potential benefit
of modifying the bed-assignment process through the use of pooling of floors, i.e., by
increasing the flexibility with which a patient is assigned to specific floors (based on
their clinical characteristics and needs). In general, rules dictating the placement of
patients with various clinical characteristics to specific locations are not well-defined
(hence the use of historical placement as noted above in the base scenario). Therefore,
to assess the benefit of flexibility in patient placement, we grouped patients based
on their clinical service and designated which of the four floors under consideration
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could be used to place such patients. These groupings (and di↵erences relative to the
previous assignment policies) can be described broadly in two groups:

(i) The two floors with patients from General Surgery, Surgical Oncology, and Trauma
and Emergency Surgery could take any patient among those three clinical ser-
vices. (In contrast, historically Trauma and Emergency Surgery patients went to
only one of the two floors.)

(ii) The two floors with Orthopedics patients (one of which also has Urology patients)
could take any Orthopedics or Urology patient (without any distinction based on
type of surgery).

Short-stay reduction strategy. The last strategy we considered is a reduction
in short-stay elective (SSE) patients who go to the floor after surgery, a change which
hospital leadership was actively considering at the time. That e↵ort focused on having
SSE patients recover overnight in the PACU without requiring being sent to the floor
(unless it was deemed clinically necessary by the patient’s team). To model the SSE
reduction we assumed that any SSE patient who historically stayed at least two days
in the hospital would continue to go to the floor (i.e., request a bed as before). We
also assumed that a random subset of the zero- and one-day LOS SSE patients no
longer requested a bed; for present purposes, we focus on assuming a 50% reduction in
the number of such patients (we also conducted a detailed sensitivity analysis; see the
Supplementary Material for additional description and results). We use the notation
SSE< to denote this strategy.

All together, the four primary scenarios we evaluated are as follows:

1. JIT;

2. JIT+Pooling: JIT and pooling combined;

3. SSE<; and

4. JIT+Pool+SSE<: JIT, pooling, and SSE< combined, which corresponds with
the actual implemented scenario.

2.5 Simulation Model Results

The results of the simulation model across the four scenarios are shown in Table 2. We
describe the results for each scenario in turn. Throughout, we denote the ↵-quantile
as Q↵, where ↵ 2 (0, 1).

JIT and JIT+Pooling scenarios

Under the JIT intervention, the model estimates decreases in average wait times for
patients from all sources. This reduction is most notable for PACU patients, with an
expected decrease in average wait time by 27.8%. While not adversely compromis-
ing average wait times from other sources, the observed improvements are noticeably
smaller, particularly for the ED (with a reduction of 1.3%). The median performance
of the JIT+Pooling scenario is similar to JIT alone, with a slightly lower average overall
patient wait time. The most notable di↵erence, however, is for higher quantiles, where
we observe a significant benefit of adding the pooling strategy. This suggests that the
primary benefit of pooling (i.e., increasing flexibility in terms of patients’ assignments
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to units) is for patients with historically longer wait times for whom alternative place-
ments might be possible. In practice, patients with exceptionally long wait times might
have their possible unit assignments manually adjusted on an ad hoc basis (with clin-
ical input and in order to avoid further delays); in contrast, using a pooling strategy
can potentially decrease the need for such workarounds by strategically articulating
and incorporating such placement priorities into the normal bed assignment process,
thereby reducing long waits.

Table 2: Simulation results for patients’ waits for beds (in hours) for various interventions

Source Intervention
Average Q0.5 Q0.75

Value (SE) �R Value (SE) �R Value (SE) �R

PACU

Base 2.59 (0.000) 0.00 (0.000) 2.34 (0.002)

JIT 1.87 (0.000) �27.8 0.18 (0.001) 1.68 (0.002) �28.5
JIT+Pool 1.76 (0.002) �32.0 0.02 (0.001) 1.37 (0.002) �41.4
SSE< 2.54 (0.001) �2.2 0.00 (0.000) 2.16 (0.004) �7.7
JIT+Pool+SSE< 1.58 (0.003) �39.2 0.00 (0.000) 1.20 (0.003) �49.0

ED

Base 3.57 (0.001) 1.12 (0.002) 4.22 (0.004)

JIT 3.52 (0.001) �1.3 1.05 (0.001) �5.8 3.79 (0.004) �10.2
JIT+Pool 3.53 (0.005) �1.2 0.94 (0.003) �15.5 3.87 (0.009) �8.3
SSE< 3.46 (0.002) �3.1 1.04 (0.002) �6.9 4.06 (0.008) �3.8
JIT+Pool+SSE< 3.33 (0.004) �6.8 0.88 (0.003) �21.5 3.42 (0.013) �19.0

Admissions

Base 10.59 (0.002) 3.71 (0.007) 11.28 (0.012)

JIT 9.65 (0.002) �8.8 2.61 (0.004) �29.5 10.87 (0.011) �3.6
JIT+Pool 9.67 (0.006) �8.7 2.48 (0.007) �33.0 11.06 (0.030) �1.9
SSE< 10.49 (0.004) �1.0 3.68 (0.012) �0.6 10.90 (0.019) �3.4
JIT+Pool+SSE< 9.39 (0.007) �11.3 2.35 (0.006) �36.6 10.36 (0.046) �8.2

ICU

Base 26.85 (0.003) 21.31 (0.020) 35.45 (0.021)

JIT 25.51 (0.002) �5.0 18.85 (0.015) �11.5 33.93 (0.012) �4.3
JIT+Pool 25.68 (0.012) �4.3 18.70 (0.055) �12.2 34.70 (0.034) �2.1
SSE< 26.64 (0.007) �0.8 20.79 (0.029) �2.4 35.33 (0.030) �0.3
JIT+Pool+SSE< 25.27 (0.013) �5.9 17.68 (0.059) �17.0 34.37 (0.031) �3.1

Floor

Base 9.08 (0.005) 2.75 (0.015) 5.77 (0.017)

JIT 8.35 (0.003) �8.0 2.18 (0.010) �20.7 5.25 (0.016) �9.1
JIT+Pool 8.45 (0.022) �6.9 1.80 (0.017) �34.4 4.88 (0.019) �15.4
SSE< 8.93 (0.010) �1.6 2.69 (0.018) �2.1 5.67 (0.029) �1.8
JIT+Pool+SSE< 8.31 (0.019) �8.4 1.62 (0.019) �41.0 4.66 (0.028) �19.3

Overall

Base 4.76 (0.000) 0.54 (0.001) 4.05 (0.002)

JIT 4.13 (0.000) �13.3 0.64 (0.001) 18.8 2.82 (0.001) �30.4
JIT+Pool 4.07 (0.002) �14.6 0.49 (0.002) �10.2 2.50 (0.004) �38.3
SSE< 4.76 (0.001) 0.0 0.48 (0.002) �11.8 3.96 (0.003) �2.2
JIT+Pool+SSE< 3.94 (0.002) �17.2 0.42 (0.001) �22.0 2.32 (0.003) �42.6

Notes. Relative (percentage) change, denoted �R, is calculated relative to the base scenario.
Standard errors for estimates are indicated “(SE)” and are shown next to the relevant value; all
results shown are averaged across 100 simulation runs. SSE< models a 50% reduction in demand
for beds from zero- and one-day-LOS SSE patients.
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Reductions in SSE volume

In the historical period, SSE patients account for approximately 10.5% of those from the
PACU. Not surprisingly, reducing overall demand for inpatient beds leads to decreases
in waits for beds across all areas, especially in the PACU (although the overall average is
unchanged, as SSE patients have the smallest average wait time at baseline). However,
this decrease is modest in comparison to the relative improvements under the JIT
scenario; for example, PACU patients’ average wait decreases 2.2% in SSE< versus
27.8% with JIT. The only area where this behavior is not observed is for the ED (JIT
corresponds to a 1.3% reduction in the average, whereas SSE< is 3.1%). This is likely
due to the fact that the ED is the second largest source of surgical bed requests (after
the PACU), and therefore ED patients benefit directly from reduced demand for the
relevant beds.

Note that SSE< assumes a 50% reduction in zero- and one-day LOS SSE patients.
We also conducted a detailed sensitivity analysis (see Supplementary Material); even
in the most extreme SSE reduction scenario (100% reduction in such patients), the
change in wait times (on average, median, and at other quantiles) is still modest in
comparison to the e↵ect from JIT+Pooling, highlighting the relative benefit of the
latter as a strategy to reduce wait times without the need to develop alternative care
pathways for patients to (non-inpatient) locations.

Combined JIT+Pooling and SSE reductions

Table 2 clearly demonstrates the potential synergistic e↵ects of an assignment policy
such as JIT and bed pooling in combination with a strategy to reduce the need for
inpatient beds (as captured by SSE reductions) across all sources. We note the impor-
tance of considering the joint impact of these di↵erent interventions as their e↵ect is
not necessarily additive and the a priori relative benefits is not obvious.

Changes in other metrics

In the Supplementary Material (Table SM3), we also show the changes in the various
scenarios for bed-idle time and occupancy. While occupancy is generally compara-
ble across the various proposals (around 86-89%), the bed-idle time decreases sub-
stantially, from an average of 54.6 idle hours per day to 7.8 hours per day in the
JIT+Pooling+SSE< scenario, representing an 85.8% reduction. We see that such large
reductions occur in all the scenarios with JIT present, confirming that the JIT assign-
ment mechanism is able to decrease the amount of time that ready beds are assigned
to patients who are not yet medically ready to transfer into them. While this idle time
is not directly tangible, it complements the patient-centric wait time measure as an
alternative view of system (in)e�ciency in the bed assignment process.

3 Implementation

On January 30, 2017, SSE patients started recovering fully in the PACU and were
assigned an inpatient bed only if explicitly requested post-operatively due to clinical
needs. With this intervention, the number of SSE patients being admitted to a surgical
inpatient bed decreased from 3.35 on average per non-holiday weekday to 1.68, a 50%
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reduction. JIT bed assignment and pooling were implemented in the four units of
interest a few weeks later, on February 27, 2017.

To assess the impact of the implementation of these strategies, we compare per-
formance metrics on the four surgical floors of interest between two periods: a pre-
implementation period (July 1, 2016 through January 29, 2017) and a post-implementation
period (February 27, 2017 through May 14, 2017). Note that the pre-implementation
period starts after a transition to a new electronic medical record at MGH, while the
post-implementation period’s end coincides with the expansion of the JIT bed assign-
ment to other floors. For a table comparing patient volumes by source in these two
periods, see Table 1.

3.1 Statistical Analysis

Surgical census tends to have highly specific patterns; it usually peaks mid-week and
reduces significantly during weekends [31, 27, 44]. Consequently, patients’ wait times,
being highly dependent on inpatient occupancy, are not independent from one another
(from one day to the next), and thus we cannot apply traditional independent-sample-
based statistical procedures. Therefore, to generate confidence intervals for estimates
of the average and various quantiles of wait times for weekday requests, we apply
a stratified bootstrapping procedure, where the stratification is based on grouping
requests at the weekly level. (Each week consists of requests placed from Monday
through Friday of that week.)

To set notation, let Wpre and Wpost denote the sets of weeks in the pre- and
post-implementation periods, respectively. (We exclude the first week from the pre-
implementation period given that it is a single day.). For every week w 2 Wpre[Wpost,
we let Dw denote the patient wait times for all patients represented in week w. Using
this setup, for each bootstrap replication b 2 {1, 2, . . . , B}, we perform the following:

1. We sample (independently, uniformly, and with replacement) from Wpre with size
|Wpre| to generate indices i⇤1, i

⇤
2, . . . , i

⇤
|Wpre| 2 Wpre. We do the same with Wpost to

sample indices j⇤1 , j
⇤
2 , . . . , j

⇤
|Wpost| 2 Wpost.

2. For the statistic S of interest (e.g., S is an average), we compute two statistics
(an absolute version bAS

b and a relative version bRS
b ):

bAS
b := S

⇣
Dj⇤1

, Dj⇤2
, . . . , Dj⇤|Wpost|

⌘
� S

⇣
Di⇤1

, Di⇤2
, . . . , Di⇤|Wpre|

⌘
,

bRS
b := S

⇣
Dj⇤1

, Dj⇤2
, . . . , Dj⇤|Wpost|

⌘.
S
⇣
Di⇤1

, Di⇤2
, . . . , Di⇤|Wpre|

⌘
� 100%.

Following this procedure, we report bias-corrected confidence intervals for both the
absolute changes A and the relative changes R. Note that for a given replicate b, we
compute the statistic based on the patient-level data with frequency corresponding to
the sample indices. We repeat this process for several choices of statistic S, including
the average and quantilesQ↵, where ↵ 2 {0.5, 0.75}. Consistent with standard practice,
we set B = 104. All bootstrapping is conducted with the statistical language R and
using the standard boot package.

There are several motivations for taking this bootstrapping approach as compared
with other possible methodological choices. First and foremost, this approach makes
full use of patient-level data. In particular, if we instead computed relevant statistics
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at the week level and then considered changes in those statistics, it would be di�cult
to assess changes for statistics which rely on a larger number of data points for reliable
estimates, especially when considering analyses by individual source for which there
may be fewer than 10 patients per week. The second advantage of this approach is
that while wait times within a given day or on adjacent days are not independent, the
high turnover rate of surgical floors (and exclusion of requests on weekends) supports
an argument for conditional independence of wait time statistics across weeks. As
a partial validation of our approach, we examined the mean and quantiles as above
when aggregating data at the week-level, and these showed no statistically significant
autocorrelation overall or at the individual source level for the 2015 data. Furthermore,
we also checked that if we grouped at the day-level that there still remains significant
autocorrelation; this was indeed the case for the ED, PACU, and ICU, supporting the
choice of grouping at the week-level.

Changes in daily measures: admissions, occupancy, and bed-idle time

To assess changes in daily measures, such as admissions, floor occupancy, and bed-
idle time, we apply the widely-used quasi-experimental method of interrupted time
series (ITS) [22, 24]. Given the relatively short time frame in which implementation is
measured, we used an intercept-only approach with an underlying ARIMA model [17].
To account for additional covariates [25], we include controls for the specific day of
week and whether the day is a holiday. We conduct our analysis with a day as the unit
of measurement and include all data during the interim period (between pre- and post-
implementation, with an additional indicator variable for the interim period). ARIMA
parameter selection is performed using the corrected Akaike Information Criterion
as implemented in the auto.arima function [18] in R (consistent with best practice
per package documentation, we override the two default parameters of using stepwise
estimation and model approximations).

The three primary quantities we estimate using ITS are as follows:

• Daily admissions to the four floors of interest (overall and by source). Even
though the source of “Floor” has small (typically zero or one) daily admission
counts, we elected to use ARIMA as well (instead of a more precise count-based
model) for consistency with the approach for the other sources. We also computed
this for non-holiday weekdays specifically; to achieve this, we modified the post-
implementation indicator variable into two—one for non-holiday weekdays in the
post period and another for holidays or weekends in the post period.

• Operational occupancy on the four floors of interest.

• Bed-idle time. This is the sum of the total hours that beds were idle (cleaned and
ready but assigned to a patient who is not medically ready). We also assessed
the total number of such assignments per day.

For all analyses, confidence intervals (CIs) are reported with 99% coverage given
that we are considering multiple outcome measures, many at the subgroup (source)
level. All ARIMA model specifications can be found in the Supplementary Material.
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Table 3: Implementation results for patients’ waits for beds (in hours)

Measure Source
Measure value

Change, Pre vs. Post
(in hours)
Pre Post �A (hours) �R (%)

Average

PACU 2.36 1.48
�0.88 �37.4

[�1.52,�0.28] [�55.8,�12.6]

ED 3.66 2.45
�1.21 �32.9

[�2.34,�0.16] [�53.7,�3.0]

Admissions 9.21 6.34
�2.87 �31.2

[�6.32, 0.90] [�60.4, 15.3]

ICU 29.10 26.22
�2.88 �9.9

[�14.34, 8.77] [�42.5, 32.7]

Floor 4.72 0.95
�3.77 �79.9

[�6.98,�1.97] [�97.7,�53.4]

Overall 4.33 3.25
�1.08 �25.0

[�1.94,�0.15] [�40.9,�3.7]

Q0.5

PACU 0.00 0.00
0.00 -

ED 1.73 0.68
�1.05 �60.9

[�1.66,�0.59] [�73.7,�43.4]

Admissions 2.63 1.43
�1.20 �45.6

[�2.17,�0.43] [�68.9,�17.3]

ICU 24.36 11.43
�12.93 �53.1

[�19.73, 5.84] [�70.9, 38.8]

Floor 2.95 0.20
�2.75 �93.2

[�4.90,�1.02] [�98.1,�19.7]

Overall 0.78 0.20
�0.58 �74.5

[�0.87,�0.38] [�83.9,�59.6]

Q0.75

PACU 2.12 0.94
�1.17 �55.5

[�1.77,�0.57] [�74.8,�32.3]

ED 4.65 2.39
�2.26 �48.6

[�4.40,�0.55] [�66.0,�12.3]

Admissions 7.26 4.33
�2.93 �40.4

[�10.09, 1.01] [�72.6, 16.6]

ICU 35.40 31.52
�3.88 �11.0

[�22.90, 16.67] [�44.1, 53.0]

Floor 5.82 1.70
�4.12 �70.8

[�6.76,�0.20] [�97.7,�5.7]

Overall 3.29 1.87
�1.42 �43.2

[�2.25,�0.88] [�56.0,�28.1]

Notes. Changes are relative to the “Pre” period. Absolute changes and relative (percentage)
changes are denoted �A and �R, respectively. Bootstrapped CIs are shown; changes for which
zero is not in the CI are bolded.

14



Braaksma et al., 2023 JIT Bed Assignment

3.2 Implementation Results

The total number of patients during the pre- and post-implementation periods is re-
flected in Table 1. (Note that the post-implementation period contained no holidays,
so a version excluding holiday from the pre-implementation period is contained in the
Supplementary Material.) Consistent with the implementation of the SSE< policy,
PACU-to-floor transfers decreased for SSE patients specifically following implemen-
tation, while ED-to-floor transfers increased given the capacity freed up by such a
decrease. Overall, the average total weekday transfers to the floor was comparable.
The operational bed occupancy decreased slightly, from 92.0% to 90.0% (change of
�2.0%, CI [�5.2%, 2.0%]).

Patient wait times

Absolute and relative changes in the average, median, and 75th percentile of patient
wait times from the pre- and post-implementation periods are shown in Table 3. For
the four inpatient floors on which JIT was implemented, average patient wait times de-
creased overall and across all sources, with statistically significant reductions observed
for the PACU, ED, and floor in particular, in addition to overall. When compared with
the simulation results, the average reductions are generally comparable with those esti-
mated for most areas with the exception of the ED which experienced a relative change
of �32.9% (CI [�53.7,�3.0]) as compared with the simulated change of �6.8%. This
change also coincided with an increase in the percent of patients with a source of ED
(from 24.8% to 27.4%, cf. Table 1).

It is worth noting that the median, a more reliable indicator of central tendency for
wait times given the heavily right-skewed nature, is reduced significantly overall (with
a change of �74.5%, CI [�83.9,�59.6]). In contrast, at higher quantiles the relative
changes are smaller in magnitude.

Bed-idle time

Weekday bed-idle time was 38.76 hours per day and 18.95 hours per day in the pre-
and post-implementation periods, respectively, reflecting a change of �19.81 hours per
day (CI [�27.24,�13.64]). This corresponds to a 50% reduction in bed-idle time, a
substantial improvement in the amount of time that beds spend clean and ready to be
occupied but with an assignment to a patient who is not medically ready to transfer
to that bed.

The reduction in total idle time is also reflected on a per-assignment basis. In par-
ticular, for all assignments which resulted in an idle bed (i.e., the bed was cleaned and
assigned to a patient before they were medically ready), the average time idle decreased
from 3.29 hours per assignment to 1.38 hours (change of �1.91, CI [�2.14,�1.71]).
(While the time-per-bed decreased, note that the average weekday number of such
idle-bed assignments increased slightly, from 11.91 per day to 13.75 per day, a change
of 1.84, [0.12, 3.25].)

We observed that the reduction in bed-idle time was not nearly as large as projected
with the simulation. We believe this is due to how JIT was implemented for patients
coming from the PACU. In the simulation we used medical readiness as the trigger to
start the bed-assignment process, with an additional administrative delay for the search
process; however, given that the medical readiness timestamp is not always reliably
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available in real time, after discussions with the admitting team, it was decided that
bed managers would start looking for beds as soon as patients arrived to the PACU
after their surgery (but before they were medically ready to transfer).

Indeed, a closer assessment of the assignment times for weekday PACU patients
post-implementation reflects this behavior—the median time from a patient arriving
in the PACU to having an assigned and ready bed is 1.17 hours (interquartile range
[0.25,2.63]), whereas medical readiness is expected at around two hours. In this period,
45.9% of patients have a recorded medical readiness timestamp within two hours of
PACU arrival; among such patients, the median time until medically ready is 1.48
hours, IQR [1.15,1.73]. Even for the majority (62.1%) of such patients, beds are still
being assigned prior to being medically ready (cf. median time from medically ready
to bed ready of �0.53 hours, IQR [�1.18,0.60]). This suggests that there remains
significant room for further improvement in bed-idle time by shifting the beginning of
the bed search process to actual medical readiness for PACU patients (an improvement
which could be enabled by more reliable documentation). While the implemented
practice is still significantly better than assigning the beds at the beginning of the
day, it is important to acknowledge that it is not medical readiness as we had initially
envisioned.

Beds idle versus patients waiting. As noted earlier, bed-idle time is best
contextualized as it relates to overall patient wait times. This tradeo↵ between patient
waiting and bed-idle time is illustrated graphically in Figure 2 for the pre- and post-
implementation periods for weekday PACU patients, the primary source of bed-idle
time. In the post-implementation period, there is better alignment between patient
and bed readiness (i.e., proximity to the line at zero hours, where patient medically
ready and bed ready coincide). Note that the large increase in the post-implementation
period at �2 hours corresponds to patients being assigned beds around the time of
arrival to the PACU from surgery (as noted above, the majority of patients do not
have medical readiness documented within two hours of PACU arrival and, as such,
have medical readiness treated as two hours post-arrival).

From Figure 2, we also see that there are PACU patients who have a ready bed
assigned over two hours prior to being medically ready to leave the PACU during the
intervention period (i.e., to the left of the �2 hours mark). Overall, 83 patients (6.7%
of weekday PACU patients) in the intervention period had a bed assigned prior to the
patient’s arrival to the PACU post-surgery. For the majority of such patients (53),
they arrived to the operating room via the ED (in contrast to patients arriving in a
scheduled manner from home or from an inpatient floor) and their inpatient bed request
was created while in the ED (of these, 50 had their bed assigned while still in the ED,
prior to surgery). This group of patients represents further room for improvement in
the process by ensuring that patients who are going directly to the operating room
from the ED (anticipating a bed need post-surgery) do not have a bed request placed
while in the ED (instead following the JIT process for PACU patients). The remaining
30 PACU patients in the intervention period (2.4% of all weekday PACU patients) had
a bed assignment that did not directly adhere to the JIT principle, possibly due to
patient characteristics that necessitated specific bed placements.
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Figure 2: Representation of time from patient medically ready until bed assigned and ready

for PACU patients with requests on non-holiday weekdays. Whenever a patient is ready

before their bed, patient wait time is incurred (right side of dashed vertical line at 0 hours),

while bed idle time is incurred when a patient is not medically ready until after their bed is

ready (left side). Di↵erences outside of 10 hours are not shown.
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E↵ects for SSE patients

Given the reduction in SSE patients, we also examined changes in wait times specifically
for this subgroup of patients. While the average and 75th percentile of wait times
decreased for PACU patients overall, this behavior masks increased wait times for SSE
patients specifically. In particular, SSE PACU patients’ average wait times increased
by 87.1% (CI [23.5, 184.1], from 2.83 hours to 5.29 hours); in contrast, non-SSE PACU
patients’ average wait times changed by �51.0% (CI [�71.9,�25.0], from 2.28 hours
to 1.11 hours).

This increase in average wait times for SSE patients is driven in part by an increase,
among SSE patients who go to the floor, in the percent who stay overnight in the PACU
(following their surgery) prior to going to the floor; this percent increased from 8.0%
to 18.7% of such patients from the pre- to post-implementation periods (a percentage-
point change of 10.7%, CI [4.4, 17.7]). Because medical readiness for PACU patients to
go to the floor is not always recorded (as noted earlier in the discussion of the simulation
model), some of this increase in overnight PACU stays, and hence appearance of an
increase in wait times, is likely attributable to an intentional decision to keep such
patients overnight in the PACU (before going to the floor) for additional monitoring.

4 Discussion

In this study, we describe the design and implementation of a Just-In-Time (JIT)
bed-assignment strategy aimed at increasing the timeliness with which adult surgical
patients reach general care floor beds. The implementation of this strategy coincided
with the evaluation of another patient flow initiative, which reduced the demand for
surgical inpatient beds among short-stay elective patients (SSE). We built a detailed
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discrete-event simulation to asses the impact of both strategies separately and com-
bined. While it was the joint implementation of these strategies what yielded the
largest benefit, the simulation showed that the relative benefit of JIT+Pooling was
larger. Implementation-wise, JIT was also the strategy that required greater buy-in
from stakeholders and attention to detail in its operationalization. Specifically, it in-
volved two major interventions: i) only medically ready-to-transfer patients would be
assigned to empty beds, and ii) pooling four general care floors into groups that would
be considered clinically indistinguishable in terms of bed assignment.

As shown in Section 3.2, the combination of these strategies yielded significant
benefits that helped ease the congestion the hospital was facing. In the months post-
implementation, patient wait times saw significant reductions from two critical up-
stream areas: the PACU (37.4% reduction on average–from 2.36 to 1.48 hours) and
the ED (32.9% reduction on average–from 3.66 to 2.45 hours), which combined account
for 85% of all patients. In the specific case of patients transferring from the ED to
general care floors, we note that they particularly benefited by the combination of the
SSE-reduction strategy and the JIT policy: the former freed up beds in the floors and
the latter guaranteed that those beds would not be pre-assigned to patients who would
come out of surgery later in the day.

The implementation results di↵ered from those predicted by the simulation model:
for most sources, wait times decreased by a larger percentage than predicted. One
potential explanation is that there was an increase in the percent of ED admissions
to these floors which was not directly captured or modeled in the simulation. One
additional challenge is creating precise rules which govern the pooling in the simulation
model, as these rules are often implicit and evolve over time along with patients’ care
needs. Another challenge in evaluating the results is the inherent variability of wait
times.

4.1 Implementation and Managerial Insights

The implementation of this strategy required substantial cultural changes. The most
significant was transitioning from a decentralized, floor-managed system to a central-
ized bed-assignment process. The early bed assignments had allowed sta↵ to assign
patients to specific team members who would know what to expect throughout their
day. In contrast, a JIT policy meant assignments would be done solely by bed managers
throughout the day and elective surgical patients would no longer have a “guaranteed”
pre-assigned bed at the beginning of the day, which created a sense of uncertainty.
Notably, the detailed simulation model analysis was essential to assuage stakeholders’
concerns.

Additionally, JIT required greater transparency from ED and ICU clinical teams.
Before JIT, the process of bed assignment was so uncertain that bed requests were
sometimes placed even if the care path for a patient was not fully determined or if the
patient was not medically ready to move. In the new process, ED providers are now
asked to wait to enter bed requests until their surgical plan is clear: they should place
a bed request only if they need to go to the floor before undergoing surgery; otherwise,
the bed request should be placed after surgery, from the PACU. If a bed has been
assigned to a patient, but no transfer has occurred for two or more hours, the floor’s
resource nurse is now instructed to call the ED’s resource nurse for an update. In the
ICU, if a bed request is placed, teams should be ready to do the hand-o↵ within one

18



Braaksma et al., 2023 JIT Bed Assignment

hour after the bed becomes available.
Finally, bed managers had to adjust their workflows as well. As they took charge of

assigning patients to beds directly, they now had to monitor and plan for many more
bed assignments throughout the day, especially into the early afternoon.

Further expansion. In this paper, we focus on four surgical units as that
was the scope of our simulation model and what allowed us to make the cleanest
comparisons of the di↵erent strategies. Notably, however, JIT was later implemented
across twelve out of the thirteen adult surgical floors at MGH in two additional waves:
on May 15, 2017 it was introduced in four more floors and on June 5, 2017 it was
implemented on another round of four floors, spanning a total of 314 beds. As soon as
it was determined that there were no major unintended consequences from the initial
rollout, leadership decided to expand its use without further numerical validation given
concerns about upstream (ED and PACU) congestion. To identify and address concerns
throughout this process, the main stakeholders held a daily huddle for two weeks after
JIT was implemented in the first four units, and for a week after the second and third
implementation waves. These 15-minute meetings provided opportunity for all areas
to debrief on how the implementation process evolved and how it could be tweaked to
address any issues. Strong leadership to guide these discussions before and during the
implementation was paramount to success.

Comparison with other wait time reduction strategies. One of the ad-
vantages of the JIT+Pooling strategy implemented in this work is that it is relatively
resource-neutral by modifying the workflows of existing sta↵ without requiring the cre-
ation of new physical capacity or hiring additional sta↵. In contrast, some other well-
known approaches to reduce patient wait times and increase access to inpatient beds
can involve significant financial investment. Examples of such strategies include the
creation of additional physical bed capacity [14, 1] and the development of additional
sta↵ roles to facility inter- and intra-hospital patient movement (e.g., in command cen-
ters [19]). However, it is important to note that we did not conduct a financial analysis
of our approach (as our primary focus was reducing wait times given the known quality-
of-care implications), and the implementation process required a significant investment
of time from a large number of sta↵.

4.2 Limitations and Future Work

JIT can work well when there are no additional constraints for bed assignments other
than floor specification; however, there can be challenges when other patient prioriti-
zation schemes are in use. For example, in the MGH Department of Medicine, patients
are categorized into two acuity levels: “high-acuity” patients are more acute and can
only be taken care of by certain teams within certain hospital floors; “low-acuity” pa-
tients can be assigned to any floor and any medical team. Moreover, there are more
low-acuity patients than high-acuity patients. A JIT policy would have to be modified
to incorporate this prioritization so that low-acuity patients do not fully occupy all the
beds that high-acuity patients need while also balancing their respective wait times.

Finally, JIT’s e↵ectiveness in addressing intra-day congestion is restricted to the
configuration of beds and their assigned clinical services within which it operates. The
bed-assignment process can be further optimized when the allocation of clinical services
to beds guarantees that, on average, there are enough available beds to meet demand
for all the di↵erent services.
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5 Conclusions

A system-wide analysis of the surgical bed-assignment process allowed us to design and
implement a Just-In-Time policy which, by changing the process for a relatively nar-
row population (scheduled surgical patients) and combining it with a focused, separate
pathway for a significant percentage of short-stay scheduled surgical patients, trans-
lated into significant reductions in wait times for PACU and ED patients. Qualitatively,
this has increased sta↵ awareness around throughput and the strategic management
of limited resources. The contributions of this work are two-fold: i) the design and
numerical validation of major changes in patient-flow processes at a major academic
medical center and ii) the managerial insights that led to a successful implementation.
Although this is a single-site study, we believe our approach is su�ciently general
to be applicable to any hospital facing similar challenges with their surgical patient
population.
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Supplementary Material

This Supplementary Material includes additional details that augment the main text.
Specifically, we include the following:

1. details of the simulation model and assumptions;

2. technical details on simulation validation and experiments;

3. details on the SSE reduction scenarios and a sensitivity analysis of these scenarios
based on the extent of the reduction of patient demand per the SSE policy;

4. simulation results for bed-idle time and occupancy (Table SM3);

5. ARIMA model parameters for the interrupted time series models; and

6. implementation results (analogous to Table 3) with holiday weeks removed.

SM1 Simulation model and assumptions

As described in Section 2 in the main text, the simulation input included timestamps of
all patient movements within the di↵erent areas of the hospital: the perioperative envi-
ronment, the emergency department, and in the inpatient floors, and the corresponding
bed requests. We take timestamps such as when patients were ready to transfer out
and their discharge times as fixed; we consider these as part of clinical processes whose
modeling is not related to the bed-assignment process.

The patient flow model (Figure SM1) starts with the arrival of each patient at his
historical bed request time. Because the precise historical rules for prioritization are
not standardized or documented, in the base scenario the model prioritizes patients
for assignment based on the order that they were historically assigned. Once a patient
is next to be assigned, the simulation looks for a bed available for assignment that
matches his needs in terms of surgical specialty, gender, and infection precautions. The
simulation includes an administrative delay, sampled from historical data, to account
for the fact that while assignments are made instantaneously when they become feasible
in the simulation, in the real world it is a manual process that is not instantaneous.

Once a patient is assigned to a bed, he must wait until becoming medically ready
to continue the process. Most patients in the simulation become medically ready at
the time of their bed request, but elective surgical patients may need to wait at this
point. Once the patient is medically ready he starts waiting for his bed to become
available to occupy. This means that the patient or closure that was occupying the
bed previously must leave and the bed must be cleaned. This wait can range from
zero, when the patient was assigned to a bed that was already ready, to over twelve
hours, in the case where a pending discharge was entered far in advance of the actual
discharge. Cleaning times are sampled from the historical data. Once the bed becomes
available the patient-wait-for-bed time ends. On the other hand, if the patient was
assigned to a bed that was ready before the patient’s medical readiness, the simulation
registers bed-idle time for the bed from the moment it was ready until the moment the
patient is medically ready. When both patient and bed are ready, the patient waits for
a transfer processing time, also drawn from the historical data, before he occupies his
bed.
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Figure SM1: A visual representation of the logic underlying the patient flow simulation

model
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The patient then stays in his bed until his historical pending discharge time (unless
he is subject to infection precautions changes or bed swaps, which are described later).
In the base scenario, at the time of the historical pending discharge, the patient’s bed
becomes available for assignment. Before the bed becomes available for assignment to
patients, the simulation first checks whether there is a closure for sta�ng or mainte-
nance that needs to be implemented on that unit. If there is such a waiting closure,
the bed will be closed for the historical duration of the closure.

The patient then waits until his historical departure time from the unit before
relinquishing his actual bed for cleaning. The model uses historical departure times
based on the belief that small changes in patients’ intraday wait times would not a↵ect
their eventual discharge times.

The simulation model closely resembles reality by including bed closures, changes
in patients’ infection precautions, and bed swaps (i.e., moving a patient to another
bed in the same floor). In the four floors of interest, 116 out of 129 beds (90%) are
semiprivate and there were a total of 69,586 bed-closure hours in 2015, e↵ectively
reducing the floors’ operational capacity to 121 beds.

Two types of bed closures occur in the simulation. First, historical closures due
to maintenance or sta�ng shortages are replicated in the model. At the historical
time of a closure start, the simulation will look for a bed to close on the appropriate
unit. If no bed is available at that time, the next bed to become available will be
closed. The closure will last for the historical duration of the closure. Second, patients
with an infection precaution close the neighboring bed when being in a semiprivate
room alone. In the case of MRSA (methicillin-resistant Staphylococcus aureus), VRE
(vancomycin-resistant Enterococcus), or both MRSA and VRE, the bed can be opened
by finding an appropriate patient to cohort. As in practice, the model executes bed
swaps to improve cohorting. Changes in patients’ infection precautions are replicated
at their historical times, potentially necessitating bed swaps. Since private rooms are
so highly demanded, we assume that patients only stayed in them historically when
absolutely required. In the simulation input, such patients were assigned the infection
precaution “non-cohortable.” The model assumes that only non-cohortable patients
can be assigned to private rooms.

Bed swaps are incorporated in the simulation using the following procedure. When
a semi-private bed becomes available for assignment (either because of a closure ending
or a pending discharge) and there is no waiting patient that is appropriate for the bed,
the simulation checks whether there is a patient on the unit that is currently in a room
alone and matches the characteristics of the bed that is now available for assignment.
If such a patient exists, he will be swapped into the bed that the first patient is leaving
and his bed will be made available to waiting patients instead of the original bed. This
allows more flexibility in the patients that can be accommodated since the bed that
becomes available to waiting patients is now suitable for any patient. Bed swaps can
also be initiated when a patient’s infection precautions change. Upon a change in a
patient’s infection precautions, the following procedures are followed.

If the patient is in a semi-private room with a roommate (who will no longer match
infection precautions):

i) Check to see if there is a room on the unit that is available for the patient or his
roommate to move into with another patient that they now match. If so, execute
this move.
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ii) If there is no room with a matching patient, see if there is an empty room available
to move the patient or roommate to. If so, execute this move.

iii) If this does not work, leave the patient together with his roommate until another
bed on the unit becomes available. Any time a bed becomes available, check to
see if either the patient or his roommate can be moved into it.

If the patient is in a semi-private room with no roommate:

i) Check to see if there is now an opportunity to cohort this patient with another pa-
tient that matches his new infection precautions. If the new infection precaution
is non-cohortable, look for a private room for this patient.

ii) If a cohorting situation or private room is not found, leave the patient in the
semi-private room.

Finally, if the patient is in a private room and is no longer non-cohortable:

i) Check to see if the patient can now be cohorted with another patient on the unit.

ii) If not, look for an empty semi-private room for this patient.

iii) If neither i) nor ii) are successful, leave the patient in the private room for the
time being.

SM2 Simulation validation and experiments

To validate our simulation model, we first ran a base scenario and statistically com-
pared its performance to historical performance. In the base scenario, patients needed
to be assigned to a bed on the same floor that they were historically assigned. Since the
historical rules for prioritization were not standardized or documented, the model pri-
oritized patients for assignment based on the order that they were historically assigned.
All patients could be assigned to “pending discharge” beds (beds in which the current
patient is indicated as leaving at some time later that day), and bed assignments for
elective surgical patients could begin as soon as their bed requests had been generated
(i.e., before their surgeries).

We compared the distribution of patients’ wait times between the 2015 historical
data and the output of the simulation’s base scenario. Following the approach of
Montgomery and Runger [28], we calculated the 95% confidence interval (CI) on the
di↵erence in means (with validation occurring whenever the interval contains zero). For
the whole patient population, the average patient wait time was 4.76 and 4.88 hours
for historical and simulation, respectively, with confidence interval for the di↵erence
of [�0.38, 0.13]. As 0 is contained in this confidence interval, we concluded that there
were no statistically significant di↵erences in the average wait time between historical
and the simulation. Likewise, we compared the simulation model for each subset of the
population when partitioned by source, by patient infection precautions, by weekday
of the bed request, or by specific floor destination (see Table SM1). While the CI for
patients from the ED ([�0.35,�0.01]) does not contain 0, it is not adjusted for multiple
testing and as such is not a concern for model validation (indeed, standard multiple
testing corrections, e.g., Holm, yield a non-significant result; in other words, per this
approach, the model is validated in this subset).
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For the results throughout the text, we present the average across 100 simulation
runs. We chose 100 because with this choice of number of simulation runs, the base
scenario yielded estimates that were within a practical tolerance for relevant stakehold-
ers at the hospital. In particular, for the average and quantiles of interest, the overall
wait time had a standard error below 0.005. Not surprisingly, the standard errors were
higher for the sources with fewer observations, but all were still within a practically
reasonable tolerance in this setting.

SM3 SSE reduction scenarios and sensitivity anal-

ysis

Before the actual SSE bed strategy was implemented, it was not known how this would
change demand for floor beds for these patients. Therefore, we considered a spectrum
of possible scenarios. Among the 898 SSE patients in 2015 who went to the four
surgical floors of interest, 653 (72.7%) had a total hospital length of stay (LOS) of
zero or one days, with the remaining 245 (27.3%) having a LOS of � 2 days. The SSE
reduction policy was not designed to a↵ect the floor placement of such longer-LOS SSE
patients; therefore, in the simulation we do not consider reductions in this group (in
the actual implementation, this average daily number of SSE patients with � 2-day
LOS decreased slightly, although the change was not statistically significant).

Instead, we consider percent reductions in the zero- or one-day LOS patients (which
we call “eligible SSE patients”). In particular, we consider, for P 2 {0, 1, 2, . . . , 100},
what the change in patient wait times is if P% of eligible SSE patients require a floor
bed. The scenario P = 100 corresponds to the base scenario (where all of the 653
eligible SSE patients still require a bed) and P = 0 corresponds to none of the eligible
SSE patients going to the floor.

In the main text, we single out one scenario that we denoted SSE<. This corre-
sponds to the case where P = 50, i.e., the eligible SSE patients going to the floor are at
50% of their historical volume. We chose this scenario to present because it corresponds
closely with the actual reduction observed during the implementation, where the av-
erage daily eligible SSE patient volume decreased to 42.7% of its pre-implementation
value (CI [25.8%, 65.0%]).

In Table SM2, we also add the scenario SSE0 for comparison; this corresponds with
the extreme case where P = 0. In Figure SM2, we show the corresponding results
for the various eligible SSE patient reduction scenarios (results for the median are
qualitatively consistent with these and Table 2 and, as such, are not shown here).

SM4 ARIMA model specifications

In this section, we include the chosen ARIMA model parameters per the selection
process detailed in the main text. The final reported models in the main text do not
include seasonality, though we performed a comparison with weekly (7-day) seasonality
included (a comparison for daily admissions, as per Table 1, is included below); model
estimates for changes post-implementation were generally comparable so we elected to
include the simpler approach.
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Figure SM2: SSE reduction sensitivity analysis for relative changes in average patient wait

times
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We use ARIMA(p, d, q)(P,D,Q) to denote a model with p autoregressive terms,
d di↵erencing terms, q moving average terms, P seasonal autoregressive terms, D
seasonal di↵erencing terms, and Q seasonal moving average terms (measurements are
at the daily level). Model parameters, coe�cients, and summary statistics (namely,
corrected Akaike Information Criterion [AICc] and in-sample root mean squared error
[RMSE]) are shown as follows: daily admissions in Tables SM4 and SM5 for overall and
weekdays, respectively; and occupancy and bed-idle time (both overall and assignment
volume per day) in Table SM6.

Finally, we performed a comparison for daily admissions of the non-seasonal model
with a version with weekly seasonality. While the automated selection process does
identify non-zero seasonal parameters in some cases (i.e., P+D+Q > 0), the estimates
for the post-implementation coe�cient specifically are similar. This is demonstrated
in Table SM7 where the corresponding estimated confidence intervals are shown (cf.
Table 1). In all cases, the (p, d, q) parameters were the same. For this reason, we
elected to use the simpler models without seasonality.

SM5 Implementation results with holidays ex-

cluded

The post-implementation period included no hospital-wide holidays (overall, there are
nine institutional holidays per year, resulting in nine holiday weeks). While holi-
days themselves typically have reduced demand for hospital beds (due to changes in
emergency department visit volume and scheduled surgical volume), surrounding days
within holiday weeks also tend to have reduced demand as well. Therefore, the results
shown in Table 3 in the main text potentially underestimate the e↵ect of implemen-
tation (as the pre-implementation period includes 7 holiday weeks out of a total of 30
complete weeks, compared to 0 out of 11 post-implementation).

To augment those results, we also conducted the comparison where holiday weeks
are excluded from the pre-implementation period. The corresponding results, analo-
gous to Table 3, are shown in Table SM8. Overall, the estimates for changes tended to
decrease (i.e., larger reductions in wait times).
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Table SM1: Validation results: Patients’ wait times for multiple partitions, with historical

in gray, simulation in white, and n the number of bed requests in each subset. Note that

confidence intervals (CIs) are at the 95% level and are not adjusted for multiple testing.

Partition n CI � means Mean St.dev. Q0.05 Q0.25 Q0.5 Q0.75 Q0.95

4.76 13.29 0.00 0.00 0.53 3.73 24.61
Overall 10,771 [-0.38, 0.13]

4.88 13.30 0.00 0.00 0.62 4.03 25.22

By source

2.45 5.52 0.00 0.00 0.00 2.12 18.63
PACU 6,204 [-0.24, 0.04]

2.55 5.73 0.00 0.00 0.00 2.28 19.02
2.78 4.59 0.03 0.13 0.70 3.01 13.83

ED 2,824 [-0.35, -0.01]
2.96 4.77 0.05 0.18 0.87 3.32 14.80

11.66 29.42 0.03 0.62 3.15 17.17 41.44
Admissions 862 [-2.38, 1.65]

12.02 29.38 0.10 1.22 3.79 16.98 41.62
24.05 25.44 1.28 5.47 12.05 32.93 76.70

ICU 701 [-1.79, 2.08]
23.91 25.14 0.97 5.88 12.40 33.68 76.30
7.31 24.71 0.02 0.22 2.49 5.52 22.83

Floor 180 [-3.70, 3.74]
7.29 24.59 0.02 0.45 2.25 4.99 23.90

By patient infection precautions

4.04 9.56 0.00 0.00 0.43 3.25 22.55
None 9,921 [-0.34, 0.04]

4.19 9.61 0.00 0.00 0.52 3.65 22.98
2.24 3.07 0.00 0.10 0.60 4.26 7.24

Influenza 10 [-3.04, 1.58]
2.97 2.85 0.17 0.17 2.72 5.58 6.45
7.35 14.61 0.00 0.03 1.52 7.33 31.23

MRSA 107 [-2.71, 3.02]
7.20 14.53 0.00 0.03 1.27 6.08 33.70
9.31 16.48 0.00 0.20 1.87 8.98 38.97

VRE 164 [-2.25, 2.96]
8.96 16.45 0.00 0.15 1.03 9.29 38.92

29.04 37.10 0.13 1.52 19.80 45.63 105.71
MRSA & VRE 15 [-20.14, 21.54]

28.34 35.25 0.03 0.68 18.97 47.23 111.80
15.29 38.74 0.00 0.29 4.83 18.59 57.75

Non-cohortable 554 [-2.92, 3.70]
14.90 38.40 0.00 0.35 4.05 18.35 55.92

By weekday of the bed request

4.97 12.54 0.00 0.10 0.55 3.20 30.81
Sunday 689 [-0.77, 1.15]

4.78 12.27 0.00 0.12 0.62 2.85 32.82
3.80 19.59 0.00 0.00 0.03 1.62 20.30

Monday 2,028 [-1.01, 0.74]
3.94 19.77 0.00 0.00 0.00 1.82 20.90
5.73 12.50 0.00 0.00 1.03 4.68 26.96

Tuesday 2,013 [-0.77, 0.35]
5.94 12.57 0.00 0.00 1.08 5.25 28.13
5.17 9.48 0.00 0.00 1.37 5.09 23.92

Wednesday 1,788 [-0.71, 0.19]
5.43 9.53 0.00 0.00 1.52 5.65 25.52
4.04 10.03 0.00 0.00 0.58 3.50 19.39

Thursday 1,555 [-0.71, 0.31]
4.24 10.02 0.00 0.00 0.78 4.08 19.82
4.50 11.52 0.00 0.00 0.32 3.20 25.25

Friday 1,885 [-0.53, 0.53]
4.50 11.26 0.00 0.00 0.40 3.72 24.28
5.67 12.69 0.00 0.12 1.13 4.72 33.41

Saturday 813 [-0.87, 0.92]
5.65 12.70 0.00 0.15 1.07 4.68 32.88

By specific floor destination (# beds)

4.05 15.10 0.00 0.00 0.35 3.13 22.51
Ortho & Uro (36) 3,366 [-0.78, 0.27]

4.30 15.24 0.00 0.00 0.48 3.92 23.02
3.58 9.54 0.00 0.00 0.22 2.50 21.65

Ortho (30) 2,522 [-0.59, 0.18]
3.79 9.64 0.00 0.00 0.32 2.98 22.63
5.38 12.73 0.00 0.00 0.80 4.33 26.89

Gen. Surg. (36) 2,735 [-0.39, 0.59]
5.28 12.61 0.00 0.00 0.65 4.18 26.82
6.48 14.51 0.00 0.00 1.23 5.43 31.63

Gen. Surg. (27) 2,148 [-0.73, 0.53]
6.58 14.40 0.00 0.00 1.30 5.92 31.45
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Table SM2: Additional simulation results for patients’ waits for beds (in hours)

Source Intervention
Average Q0.5 Q0.75

Value �R Value �R Value �R

PACU
Base 2.59 0.00 2.34
SSE0 2.49 �4.0 0.00 1.96 �16.4
JIT+Pool+SSE0 1.45 �44.0 0.00 1.00 �57.4

ED
Base 3.57 1.12 4.22
SSE0 3.37 �5.5 0.98 �12.0 3.93 �6.8
JIT+Pool+SSE0 3.10 �13.1 0.81 �27.9 2.89 �31.5

Admissions
Base 10.59 3.71 11.28
SSE0 10.40 �1.8 3.64 �1.8 10.71 �5.1
JIT+Pool+SSE0 9.25 �12.7 2.26 �39.1 9.70 �14.0

ICU
Base 26.85 21.31 35.45
SSE0 26.37 �1.8 20.06 �5.9 35.24 �0.6
JIT+Pool+SSE0 24.80 �7.6 16.92 �20.6 34.09 �3.8

Floor
Base 9.08 2.75 5.77
SSE0 8.80 �3.0 2.60 �5.4 5.63 �2.4
JIT+Pool+SSE0 8.14 �10.3 1.40 �49.1 4.38 �24.2

Overall
Base 4.76 0.54 4.05
SSE0 4.78 0.3 0.43 �21.2 3.89 �4.0
JIT+Pool+SSE0 3.87 �18.8 0.37 �32.4 2.17 �46.4

Notes. See notes for Table 2 in the main text. The additional scenario added here, SSE0, corre-
sponds with no eligible SSE patients (i.e., SSE patients with length of stay at most one day) going
to the inpatient surgical floors.

Table SM3: Simulation results for other metrics—daily averages for bed-idle time and occu-

pancy

Intervention
Bed-idle time (in hours) Operational occupancy (%)
Value (SE) �R Value (SE) �A

Base 54.6 (0.008) 88.5 (0.004)

SSE< 54.5 (0.029) �0.1 87.5 (0.006) �1.0
SSE0 53.9 (0.008) �1.3 86.6 (0.004) �1.9
JIT 7.2 (0.003) �86.8 88.7 (0.004) 0.2
JIT+Pooling 7.7 (0.006) �85.8 88.6 (0.005) 0.1
JIT+Pooling+SSE< 7.8 (0.007) �85.7 87.8 (0.006) �0.7
JIT+Pooling+SSE0 7.7 (0.005) �85.8 87.0 (0.005) �1.6

Notes. We denote standard errors (across 100 simulation runs) as “(SE)”; �A and �R denote
absolute and relative (percentage) change as compared with “Base,” respectively. Bed-idle time
and occupancy are computed on a daily basis with weekends and holidays excluded.
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Table SM4: ARIMA model coe�cients and summary statistics for changes in Daily Ad-

missions.

Source
PACU PACU PACU

ED Admissions ICU Floor Overall
(all) (non-SSE) (SSE)

Variable Coe�cient (Standard error)

(Intercept)
1.94 1.55 0.38 7.88 1.29 1.79 0.28 13.18
(0.66) (0.65) (0.26) (0.42) (0.24) (0.18) (0.11) (0.80)

Indicators

Holiday
�21.67 �19.62 �1.62 �0.66 �2.46 0.94 �0.26 �23.72
(1.63) (1.53) (0.63) (1.03) (0.59) (0.45) (0.28) (1.95)

Interim
�0.93 0.42 �1.15 0.68 �0.02 �0.03 0.37 0.10
(0.80) (0.95) (0.34) (0.55) (0.32) (0.25) (0.15) (0.91)

Post
�0.59 0.32 �1.02 1.03 0.03 0.03 �0.21 0.31
(0.53) (0.63) (0.23) (0.37) (0.21) (0.17) (0.10) (0.60)

Day of week

Mon
25.04 23.54 1.48 �1.15 1.90 �0.97 �0.01 24.76
(0.97) (0.88) (0.36) (0.59) (0.34) (0.25) (0.16) (1.22)

Tue
24.38 20.01 4.39 �1.86 1.73 �0.37 �0.07 23.80
(0.91) (0.86) (0.35) (0.58) (0.33) (0.26) (0.16) (1.10)

Wed
21.13 18.67 2.48 �1.93 1.51 �0.39 0.20 20.51
(0.91) (0.85) (0.35) (0.58) (0.33) (0.25) (0.16) (1.11)

Thu
14.40 12.18 2.23 �1.51 2.01 �0.22 0.45 15.11
(0.91) (0.85) (0.35) (0.58) (0.33) (0.25) (0.16) (1.11)

Fri
19.93 16.67 3.31 �0.60 0.69 �0.02 0.04 20.05
(0.91) (0.85) (0.35) (0.57) (0.33) (0.26) (0.16) (1.09)

Sat
1.33 0.85 0.42 �0.44 �0.12 0.35 0.33 1.41
(0.95) (0.87) (0.35) (0.58) (0.33) (0.24) (0.16) (1.20)

AR1
�0.09 1.74 �1.47 �0.16
(0.06) (0.03) (0.04) (0.06)

AR2
�0.91 �0.94
(0.04) (0.05)

MA1
�1.78 1.52
(0.02) (0.03)

MA2
0.98 0.95
(0.02) (0.04)

Measure Value
ARIMA (1,0,0) (2,0,2) (0,0,0) (0,0,0) (0,0,0) (2,0,2) (0,0,0) (1,0,0)
AICc 1855.16 1819.15 1253.43 1562.71 1211.08 1060.00 734.75 1972.32
RMSE 4.34 4.05 1.69 2.75 1.58 1.22 0.74 5.22

Notes. Holiday, Interim, and Post are indicator (0/1) variables; day of week is relative to Sunday;
ARk and MAk denote autoregressive and moving average terms of order k, respectively; AICc
denotes corrected Akaike Information Criterion; and RMSE denotes root mean square error.
Seasonal parameters are not estimated (P = D = Q = 0) and are therefore omitted. Coe�cients
not estimated are left blank.

33



Table SM5: ARIMA model coe�cients and summary statistics for changes in Weekday

Daily Admissions. Notation as in Table SM4.

Source
PACU PACU PACU

ED Admissions ICU Floor Overall
(all) (non-SSE) (SSE)

Variable Coe�cient (Standard error)

(Intercept)
1.99 1.80 7.90 1.38 1.77 0.32 13.30
(0.69) (0.66) (0.44) (0.25) (0.19) (0.12) (0.84)

Indicators

Holiday
�21.66 �19.96 �1.64 �0.66 �2.44 0.94 �0.25 �23.71
(1.63) (1.55) (0.63) (1.03) (0.59) (0.45) (0.28) (1.95)

Interim
�0.93 0.25 �1.11 0.68 �0.02 �0.03 0.37 0.10
(0.80) (0.83) (0.33) (0.55) (0.32) (0.25) (0.15) (0.91)

Post- �0.50 0.86 �1.30 1.06 0.19 �0.01 �0.16 0.52
weekday (0.64) (0.65) (0.26) (0.43) (0.25) (0.20) (0.12) (0.73)

Post- �0.79 �0.63 �0.21 0.95 �0.37 0.12 �0.35 �0.20
weekend (1.03) (1.02) (0.38) (0.68) (0.39) (0.31) (0.18) (1.19)

Day of week

Mon
24.97 23.20 1.92 �1.18 1.77 �0.94 �0.06 24.59
(1.02) (0.93) (0.28) (0.62) (0.35) (0.26) (0.17) (1.26)

Tue
24.31 19.63 4.84 �1.89 1.60 �0.34 �0.11 23.63
(0.96) (0.91) (0.26) (0.61) (0.35) (0.28) (0.16) (1.15)

Wed
21.06 18.30 2.93 �1.95 1.37 �0.36 0.15 20.34
(0.96) (0.91) (0.26) (0.61) (0.35) (0.26) (0.16) (1.16)

Thu
14.33 11.81 2.67 �1.54 1.87 �0.19 0.40 14.93
(0.96) (0.91) (0.26) (0.61) (0.35) (0.26) (0.16) (1.16)

Fri
19.87 16.27 3.75 �0.63 0.55 0.00 �0.01 19.88
(0.95) (0.91) (0.26) (0.60) (0.35) (0.27) (0.16) (1.14)

Sat
1.33 0.93 0.59 �0.44 �0.11 0.35 0.33 1.42
(0.95) (0.87) (0.27) (0.58) (0.33) (0.24) (0.16) (1.19)

AR1
�0.09 �1.47 �0.16
(0.06) (0.04) (0.06)

AR2
�0.94
(0.05)

MA1
1.52
(0.03)

MA2
0.95
(0.05)

Measure Value
ARIMA (1,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0) (2,0,2) (0,0,0) (1,0,0)
AICc 1857.28 1823.71 1250.10 1564.86 1211.75 1062.10 736.13 1974.25
RMSE 4.34 4.13 1.68 2.75 1.57 1.22 0.74 5.22
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Table SM6: ARIMA model coe�cients and summary statistics for changes in Bed Occu-

pancy and Bed-Idle Time. Notation as in Table SM4. Occupancy is measured on a

scale of 0-100%, and bed-idle time is reported both overall and in number of daily idle-bed

assignments.

Outcome Occupancy (%)
Total daily Total daily

bed-idle hours bed-idle assignments

Variable Coe�cient (Standard error)

(Intercept)
76.13 1.47
(0.89) (0.62)

Indicators

Holiday
�13.04 �50.11 �14.58
(1.53) (6.29) (1.45)

Interim
0.27 2.17 0.28
(1.92) (3.34) (0.78)

Post- �1.63 �20.44 1.68
weekday (1.41) (2.64) (0.61)

Post- �4.90 3.91 0.25
weekend (1.58) (3.81) (0.95)

Day of week

Mon
13.32 64.20 17.01
(0.83) (2.76) (0.87)

Tue
18.87 41.95 11.87
(0.84) (2.61) (0.85)

Wed
18.08 29.38 7.96
(0.88) (2.61) (0.85)

Thu
14.11 26.29 6.53
(0.88) (2.62) (0.85)

Fri
13.16 35.13 9.58
(0.84) (2.58) (0.85)

Sat
4.12 2.97 �0.08
(0.75) (2.65) (0.80)

AR1
1.40
(0.16)

AR2
�0.62
(0.12)

MA1
�0.93
(0.17)

MA2
0.41
(0.08)

Measure Value
ARIMA parameters (2,0,2) (0,0,0) (0,0,0)

AICc 1906.34 2718.30 1785.83
RMSE 4.59 16.76 3.86
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Table SM7: Comparison of confidence interval (CI) estimates for changes in daily admis-

sions for ARIMA models with and without weekly (7-day) seasonality. ARIMA parameters

(p, d, q)(P,D,Q) are also shown.

ARIMA type Without seasonality With seasonality

Measure CI Parameters CI Parameters
Source
PACU (all) [�1.96,0.79] (1,0,0)(0,0,0) [�1.96,0.79] (1,0,0)(0,0,0)
PACU (non-SSE) [�1.31,1.94 (2,0,2)(0,0,0) [�1.31,1.94] (2,0,2)(0,0,0)
PACU (SSE) [�1.60,�0.44] (0,0,0)(0,0,0) [�1.60,�0.44] (0,0,0)(0,0,0)
ED [0.09,1.98] (0,0,0)(0,0,0) [0.17,1.85] (0,0,0)(0,0,1)
Admissions [�0.52,0.57] (0,0,0)(0,0,0) [�0.52,0.57] (0,0,0)(0,0,0)
ICU [�0.40,0.46] (2,0,2)(0,0,0) [�0.43,0.50] (2,0,2)(0,0,1)
Floor [�0.47,0.04] (0,0,0)(0,0,0) [�0.41,�0.03] (0,0,0)(1,0,1)
Overall [�1.23,1.86] (1,0,0)(0,0,0) [�1.23,1.86] (1,0,0)(0,0,0)
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Table SM8: Implementation results for patients’ waits for beds (in hours), excluding hol-

iday weeks

Measure Source
Measure value

Change, Pre vs. Post
(in hours)
Pre Post �A (hours) �R (%)

Average

PACU 2.60 1.48
�1.12 �43.2

[�1.79,�0.47] [�59.7,�21.2]

ED 4.00 2.45
�1.55 �38.7

[�2.72,�0.36] [�57.4,�8.2]

Admissions 9.41 6.34
�3.07 �32.6

[�6.57, 0.81] [�62.5, 12.0]

ICU 31.01 26.22
�4.78 �15.4

[�17.62, 6.63] [�45.9, 25.2]

Floor 4.85 0.95
�3.90 �80.4

[�7.42,�1.92] [�97.7,�51.9]

Overall 4.66 3.25
�1.41 �30.2

[�2.26,�0.45] [�44.6,�10.3]

Q0.5

PACU 0.10 0.00
�0.10 �100.00

- -

ED 1.97 0.68
�1.29 �65.7

[�2.11,�0.76] [�78.0,�51.1]

Admissions 2.75 1.43
�1.32 �47.9

[�2.26,�0.52] [�70.1,�20.4]

ICU 25.79 11.43
�14.36 �55.7

[�20.52, 2.22] [�71.8, 8.3]

Floor 3.08 0.20
�2.88 �93.5

[�5.13,�1.12] [�98.2,�23.3]

Overall 0.93 0.20
�0.73 �78.6

[�1.05,�0.49] [�86.7,�65.5]

Q0.75

PACU 2.37 0.94
�1.42 �60.2

[�2.00,�0.77] [�77.1,�38.9]

ED 5.08 2.39
�2.69 �53.0

[�5.07,�0.78] [�69.1,�14.8]

Admissions 8.02 4.33
�3.69 �46.0

[�13.05, 0.10] [�77.4, 0.7]

ICU 45.58 31.52
�14.06 �30.9

[�32.33, 13.04] [�52.5, 36.9]

Floor 5.82 1.70
�4.12 �70.8

[�7.42,�0.20] [�97.6,�1.5]

Overall 3.63 1.87
�1.77 �48.6

[�2.67,�1.05] [�60.9,�32.8]

Notes. Changes are relative to the “Pre” period. Absolute changes and relative (percentage)
changes are denoted �A and �R, respectively. Bootstrapped CIs are shown. All holiday weeks are
excluded (7 weeks in pre, 0 weeks in post period).
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