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Abstract This tutorial focuses on the implementation of data- and analytics-driven innovation in
health systems. In particular, we focus on innovation around operations, system design,
and optimization of large delivery systems. Additionally, the tutorial discusses a formal
project management framework, general principles, and key success drivers that enable
field implementations of high-impact, analytics-driven projects. These discussions are
specifically centered on facilitating collaboration between academics with analytics ex-
pertise, clinicians, and administrative leaders in healthcare systems, as well as policy
makers. To illustrate the usage of these ideas in practice, we describe three projects done in
collaboration between Massachusetts General Hospital and the Massachusetts Institute of
Technology Sloan School of Management.
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1. Introduction
Over the last decade, analytics disciplines and methodologies have been increasingly leveraged
to drive system-level innovation in many industries and areas, such as airline, retail, mar-
keting, and finance. The healthcare industry, albeit behind, is making big strides. Given the
increasing and uncontrolled government and private spending, as well as the quality and safety
challenges that health systems around the world face, the need for disruptive innovation is
more pressing than ever. Furthermore, the widespread dissemination of electronic medical
record systems (EMRs); advances in the understanding and mapping of the human genome;
and various emerging digital, mobile, and wearable technologies are enabling an un-
precedented accumulation of rich health-related data on individuals and populations.

Stimulated by these emerging trends, academics from various communities and disciplines
have been increasingly researching the potential that data and analytics have to inform and
drive innovation in the healthcare industry. Current research efforts are focused on various
application domains, such as the development and optimization of clinical care and thera-
peutics, improved operations management and design of health systems, changing public
policy and regulations, as well as the design of financial schemes and incentives. Yet, thus far,
much of this emerging body of work has stayed at the academic level of models, simulations,
use cases, and small-scale pilot experiments, whereas widespread adoption and dissemination
have been relatively slow and limited. The healthcare industry and health systems are
complex, are highly regulated, and often involve high stakes, all of which can serve as inhibitors
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and barriers to system innovation. At the same time, much of the academic work in these areas
has not yet fully and consistently incorporated various organizational, cultural, and regulatory
considerations that are critical to the practical relevance of the work and its ultimate potential
impact on practice.

This tutorial is focused on the implementation of data- and analytics-driven innovation in
health systems, specifically innovation around operations, system design, and optimization of
large delivery systems. The tutorial describes vignettes from projects conducted as part of
a multiyear collaboration between Massachusetts General Hospital (MGH) and the Massa-
chusetts Institute of Technology (MIT). The goal is not merely to highlight the technical
details and the respective analytics approaches and solutions but to also describe a robust
process of collaborative work between academics with analytics expertise, clinicians, and
administrators in large medical centers. Moreover, the tutorial attempts to identify and
discuss key considerations and success drivers as to how analytics related academic research
can lead to field implementations of innovation in complex health systems. This will hopefully
provide some principles indicating how academics who master analytics methods can effec-
tively collaborate with clinician and administrative leaders, as well as front-line clinical teams,
to disseminate related research into innovation in the operations management and system
design of large medical centers and potentially other large health systems.

To appropriately position the work described in this tutorial, it is worthwhile to discuss the
major areas of study within the broader and evolving work of healthcare analytics. The
discussion will be brief and focused on the major research questions, methodologies, and
typical results in each stream of work. The examples mentioned are merely a small sample and
do not represent the entirety of relevant work.

1.1. Diagnostics, Clinical Care Protocols, and Therapeutics
There is an increasing body of work that aims to leverage data to inform how clinical care
protocols could be optimized and personalized to individual patients and specific patient
segments. This includes a wide range of medical conditions and care elements, such as di-
agnostics, care interventions, drug selection, and optimal treatment parameters. Typical
questions include the following: What is the dynamic policy that optimally uses diagnostic
resources? What is the optimal combination of drugs for each patient segment, and what are
the appropriate patient segments? What is the best timing to deploy certain clinical in-
terventions? Can certainmedical conditions be diagnosed earlier based on available data? This
body of work relies heavily on data-driven work, as well as on underlying models of disease
progression. To tackle these questions, there is a wide range of optimization, statistical, and
machine learning frameworks and methodologies that are being applied, such as partially
observed Markov decision processes (e.g., Ayer et al. [12], Bertsekas and Tsitsiklis [20],
Schaefer et al. [77]), robust optimization (e.g., Chan and Mǐsić [27], Nohadani and Roy [69]),
multiarm bandit models (e.g., Bastani and Bayati [17]), as well as existing and newly developed
machine learningmodels and algorithms, particularly sparse models (e.g., Bertsimas et al. [22],
Mahmoudi et al. [61]).

The potential impact of this work is high. In particular, the hope is that physicians will
adopt the specific models or at least the insights that emerge from the models to improve the
design and delivery of diagnostic and clinical care protocols. Indeed, the medical community is
increasingly interested in this type of work, and many physicians actively seek out academic
partners with analytics skills and expertise. However, there remain multiple significant
barriers that often inhibit and slow the rate and scale of implementation of this type of work.
First, the efficacy analysis of the work often relies on pure modeling, simulations, or (ret-
rospective) observational data analyses. These have objective limitations but, more impor-
tantly, fall below the stringent standard commonly accepted in the medical world to rely on
randomized control experiments to assess efficacy. Moreover, the relevant data sets are often
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private, and it is challenging to integrate multi-institutional data to obtain more powerful
and reproducible analyses.Whereas models can inform potential randomized trials, there are
substantial logistical and regulatory challenges to conduct randomized field experiments
with newly proposed (model-driven) protocols. Furthermore, there are often significant
challenges to incorporating newly developed tools and models into the existing workflows
and operational information technology (IT) systems (e.g., EMR) currently used by
physicians and clinical teams. This is another major barrier for adoption. Finally, al-
though physician culture is changing rapidly, there are still many physicians who are
resistant to the adoption of such tools, because of a lack of familiarity with analytics
methods and, potentially, for fear that their traditional roles as sole decision makers will
be diminished.

1.2. Public Policy and Health-Related Public Resource Allocation
There is a large and evolving body of work that aims to inform public health policy and
regulations. One stream of work in this category aims to develop models that more accurately
assess healthcare costs (e.g., Bertsimas et al. [23]) or to inform government (and private)
payment schemes (e.g., Fuloria and Zenios [30]). Another important stream of work in this
space is focused on the optimization of the policies and systems responsible for organ
transplantations and other scarce resources (e.g., Agarwal et al. [2], Ashlagi and Roth [9], Ata
et al. [10, 11], Bertsimas et al. [21], Kaplan and O’Keefe [48], Kim et al. [51]). This work covers
multiple aspects, including issues such as the design of improved criteria and algorithms
to assign organs to patients, incentive schemes to improve overall system performance, and
logistics optimization. Data used for this type of work include publicly available data, such
as claims, as well as private data on patients who belong to specific hospital systems or one
provided by a government agency as part of sponsored research (or a formal research con-
tract). From a methodological point of view, this stream of work relies on various modeling
approaches in stochastic systems (e.g., random graphs and queuing models), game-theoretic
settings to capture the various stakeholder incentives, and classical optimization techniques
and frameworks. In addition, this body of work often employs a range of empirical methods
to establish causal inference and efficacy analysis, often supported by computerized (data-
driven) simulations.

It is worth noting that at least some of the work on organ transplantations has, in fact,
resulted in field implementations and tangible impact on practice (e.g., Anderson et al. [7], Ata
et al. [11]). One potential driver for these impressive success stories is the fact that in this area,
there are available curated data sets (some are anonymized) and, even more important,
commonly accepted simulation settings to assess newly proposed policies. In other cases,
obvious interfaces for dissemination of the work into practice do not currently exist, with the
typical barriers including a lack of structured organizational interfaces, as well as a lack of
culture and expertise in using data analytics.

1.3. Health System Operations and Design
This large body of work is concerned with questions related to improving clinical and op-
erational processes and tackling system-level issues in healthcare organizations and networks.
This work includes the design and optimization of a broad range of activities, such as
scheduling and staffing practices and algorithms, network design, strategic and real-time
resource allocation, patient placement and flow management, and other clinical and man-
agement processes. There are several themes on the methodology front. One is concerned with
descriptive empirical analysis that employs various econometric methods to identify causal
mechanisms (Ang et al. [8], Kim et al. [49, 50], Song et al. [82], Terwiesch et al. [83]). Although
typically not providing specific prescriptive algorithms, these studies often provide high-level
insights on the effectiveness of existing practices and how they could potentially be improved.
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A second theme is concerned with developing predictive algorithms, for example, to assess the
risk of specific patients to be readmitted or not show up to an appointment. Another example
would be predictive models to anticipate how long patients will stay in the hospital (e.g., Carter
and Potts [24], Liu et al. [60], McEvoy et al. [63], Mohammadi et al. [65], Robinson et al. [73],
Shi et al. [80]). Other predictive algorithms are developed in the context of specific decisions or
interventions and aim to inform which patients should be prioritized. The papers under this
theme employ a range of statistical and machine learning models, and some also assume certain
structural models to capture the dynamics of the underlying systems. A third theme is focused
on the development of prescriptive optimization algorithms that support specific strategic or
operational processes with the goal of providing decision support tools to clinical and ad-
ministrative teams (e.g., Ayer et al. [13], , Hu et al. [42], Lee et al. [53, 54], Li et al. [58], Negoescu
et al. [68], Saghafian et al. [75], Shi et al. [80], Sir et al. [81], Zenteno Langle et al. [92]). These
papers employ a range of optimization models and algorithms, as well as simulation
techniques, often incorporating inputs from predictive models. Most of the work in this area
is done based on private data sets that belong to specific systems (e.g., scheduling data, EMR
records and time stamps, radio-frequency identification [RFID] systems and claims). This is
perhaps the largest body of work among the three categories, and the related work goes back
several decades. There is no doubt that this area of work has tremendous potential impact
on the quality and cost of health systems. In fact, an increasing number of health systems
recognize the importance of developing internal analytics capabilities and collaborating with
analytics experts. This trend is partially affected and incentivized by ongoing changes in
market payment schemes and the transition, in some states, from fee-for-service to risk
contracts. However, excluding relatively few exceptions (e.g., Ayer et al. [14], Cohn et al.
[28], Lee and Zaider [52], McEvoy et al. [63], Shi et al. [80], Sir et al. [81], Thomas et al. [84],
Thompson et al. [85], Woodall et al. [90], Zenteno Langle et al. [92]), most of the existing
work does not ultimately get implemented in the field, and even in cases when it does, these
are typically small-scale pilots without clearly documented sustained, system-level impact.
There are multiple hypothesized barriers that lead to the current lack of implementations,
which this tutorial discusses in detail in the subsequent section. Furthermore, cross-system
dissemination is even more challenging.

As already mentioned, the goal of this tutorial is to discuss several general principles and
success drivers that enable field implementations of high-impact, analytics-driven innovation
in large medical centers and delivery systems, specifically through collaboration between
academics with analytics expertise, clinicians and administrative leaders in healthcare sys-
tems, and policy makers. The rest of the tutorial is structured as follows. Section 2 provides
a discussion of the structure and methodology of the MGH-MIT collaboration and particular
key success drivers to enable system-level, analytics-driven innovation. This section is followed
by three sections, each discussing a particular vignette of a specific project. In particular, the
three examples that will be discussed are as follows:

i. In Section 3, the implementation of a new scheduling system at theMGHCancer Infusion
Center

ii. In Section 4, the development of a machine learning–based algorithm to predict hospital
discharges in the next 24 hours as part of a redesign of the discharge process in the hospital
iii. In Section 5, the design of a system-level strategy to improve the management of heart

failure patients

The discussion of each sample project includes a description of the underlying problem
that the project aims to address the development of the solution approach and the
implementation strategy. In particular, the discussion of specific projects aims to il-
lustrate how various principles and success drivers discussed in Section 2 play a role in the
specific context.
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2. Collaboration Model and Success Drivers
2.1. Background
MGH was founded in 1811 in Boston, Massachusetts, as the first teaching hospital of Harvard
Medical School and is, together with Brigham and Women’s Hospital, a founding member of
Partners Healthcare. It is consistently ranked among the top five hospitals in the United States
by U.S. News and World Report, and it is widely regarded as one of the leading healthcare
institutions in the country. With over 1,000 licensed beds, MGH admits approximately 50,000
inpatients, performs more than 42,000 procedures and records close to 108,000 emergency
room visits per year. Additionally, MGH serves over 1.5 million outpatients annually in clinics
located across several specialized treatment facilities. Finally, as an academic medical center
(AMC), MGH administers numerous residency training and educational programs and
maintains an extensive research portfolio (Massachusetts General Hospital [62]).

TheMGH-MIT Collaboration started over a decade ago between MGH and the MIT Sloan
School of Management. Over the years, it has evolved to have a formal structure within MGH
that is managed by a recently constructed vice president- (VP-) level leadership role, the Vice
President for Healthcare Systems Engineering, with direct guidance, funding, and oversight
from the president of the hospital as well as other executive leadership. At its inception, the
collaboration focused on the perioperative environment (i.e., the system responsible for
surgical activities), but after several successful data-driven implementations, it expanded its
reach to pursue projects in the hospital more broadly, including multiple outpatient projects.
Over the last four years, the collaboration as a strategic priority has centered its attention on
projects related to improving inpatient capacity management by addressing major patient
crowding and flow management challenges that MGH has been facing over the years.

The first project implementation occurred at the end of 2011; it was enabled by work to
optimize surgeons’ day of surgery with the goal of smoothing out the weekly patient census
on the surgical floors. On the basis of the recommendations of the developed optimization
framework, about 35% of the surgeons at MGH changed their day of surgery (Zenteno Langle
et al. [92, 93]). Since then, the collaboration has implemented nine multiyear, system-level
projects, almost all based on extensive data analytics and decision support tools that were
operationalized in the field. These projects have resulted in a major positive impact on the AMC’s
operational efficiencies and quality of care. In addition, there are currently five projects that are in
the implementation phase and several more that are in the planning phase. The collaboration’s
projects have involved many of the services and units of the hospital, in both the inpatient and
outpatient arenas, and engaged many clinical and administrative leaders and teams. Other ex-
amples of projects that were implemented but are not discussed in detail in this tutorial include

i. the development of improved algorithms to assign hospital beds to admitted patients
(Hiltrop [40], McNichols [64], Ugarph [88]),

ii. the design of a new outpatient nononcology infusion center (Ghobadi et al. [32]),
iii. the optimization of surgical packs and supplies inventory levels (Ben-Zvi [18], Schlanser

[78]), and
iv. the optimization of primary care physicians’ session schedule to smooth staff workload

(Patel [71]).

2.2. Project Management Methodology
The MGH-MIT Collaboration has developed a proven methodology to identify, manage, and
implement its projects.

2.2.1. Project Identification. Each project starts with the identification of a relatively
broad problem domain based on multiple criteria, including
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i. hypothesized significant system-level impact in high-priority areas according to the
priorities of the hospital senior leadership,

ii. assessment that the solution is likely to be nontrivial and require major system-level data
analyses and changes,
iii. the existence of relevant operational and clinical data that allow rigorous analyses and

hypothesis testing, and
iv. organizational maturity to make the necessary changes, and the presence of ap-

propriate “local” (unit-level) leadership that is ready to embrace and lead the anticipated
change process.

The verification of these “conditions” is done through a series of discussions and meetings, as
well as appropriate data analyses. At the successful conclusion of the identification phase, the
initial project team is constructed. The project team typically consists of

i. clinical and administrative leaders from the relevant affected units and other stakeholders
likely to be involved in the project;

ii. representatives of the MGH leadership of the collaboration; and
iii. MIT students, postdoctoral fellows, and faculty.

There is also a set cadence of weeklymeetings to plan, conduct, and discuss the data analyses
and project management; they also serve to monitor progress and provide leadership guidance.
Although the goal of each project is to ultimately develop and implement practical solutions in
the hospital system, the projects also have explicit and formally defined academic research
goals. In particular, many aspects of the projects are managed as a research collaboration with
the aim to mentor and enable the research output of MIT students and postdoctoral fellows, as
well as the hospital’s residents and fellows.

2.2.2. Project’s Problem Definition. As mentioned above, the initial identification
phase is focused on a broad problem domain. The subsequent phase aims to study this problem
domain and develop a more concrete and specific problem definition. This process can take
several months and is informed by extensive process and systemmapping, experts’ inputs, and
extensive data analyses and analytics. The decision is informed by multiple factors, among
which are

i. data-driven identification and validation of hypotheses regarding system-level root
causes of observed “organizational symptoms,”

ii. refined understanding and measurement of desired performance metrics to be affected
and what their current state is,
iii. assessment of the organizational maturity to accept different levels of change, and
iv. longer-term vision regarding the most effective sequence of efforts that maximizes the

overall likelihood to implement system-level change and obtain significant impact.

This phase is conducted by the project team with oversight of the senior leadership
of the hospital and the involved units (typically the hospital’s president and senior VPs).
At the conclusion of this phase, the team’s composition could be modified to adapt
to the refined project’s problem definition and the hypotheses regarding anticipated
activities.

2.2.3. Development of Prototype Solution Approaches and Tools. This phase is
conducted in an iterative manner over multiple months, following research hypothesis testing
methodology and extensive data analyses. This step is also informed by literature review of
relevant past work. In addition, there is extensive development of appropriate analytics tools.
The typical outcome of this phase is not a singular prescribed solution but rather a robust
modeling framework and a set of decision support tools that include
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i. end-to-end modeling tools that

a. capture the relevant potential changes to the system and workflow processes,
b. enable reliable assessments of the anticipated impact of these changes, and
c. delineate and quantify the magnitude of the main trade-offs decision makers should

consider; and
ii. validated prototypes of appropriate decision support tools that enable the newly pro-

posed system and process design.

At the conclusion of this phase, there is a sequence of organizational presentations and
discussions to obtain feedback and buy-in from all relevant stakeholders. Finally, we work to
obtain the hospital’s leadership approval to move on to the implementation phase.

2.2.4. Development and Execution of Implementation Plan. Once a project tran-
sitions to the implementation phase, the project team is expanded to include additional relevant
stakeholders and other units that are critical for this process. The team continues to iteratively
refine the solution approaches and decision support tools, asmore considerations and constraints
are identified. Depending on the nature of the project and the specific developed solution
approaches and tools, the implementation plan could include a sequence of pilots with the goal of
building organizational confidence and buy-in, test various key elements of the newly proposed
system changes, and smooth the transition from the current state to the desired new state. One
of the major focus areas during this phase is the detailed planning and testing of new workflow
processes. Specifically, there is focused effort to identify and develop practical plans to integrate
the new decision support tools into the existing hospital IT infrastructure that supports the
workflow processes. Furthermore, there is extensive work to transition the analytics and decision
support tools and models from the development phase, in which MIT teammembers are heavily
involved, to an operational state in which the expectation is that the tools will be operated and
maintained primarily (and hopefully solely) by hospital staff.

2.2.5. Monitoring Results and Impact. This phase starts during the implementation
phase and continues afterward. The goal is to monitor the outcomes and impact of the project
on the corresponding predetermined project’s performance metrics, as well as others. It is
critical to establish measurement methodology and robust processes and infrastructure, not
only for research purposes (this is typically the phase when academic research articles are
written) but also to sustain the project’s impact and allow further improvements and re-
finements over time. Moreover, this is also critical to inject a culture of data-driven decision
making and to build organizational confidence, which are key for the ability to pursue future,
potentially more ambitious, projects.

Availability of data is key to all of the project phases outlined above. The MGH-MIT
Collaboration has devoted significant efforts to develop a robust data infrastructure that
supports the work. These efforts include processes to allow team members timely access to the
relevant data sources and data sets. For example, MIT students and postdoctoral fellows are
enrolled (including appropriate training) as nonemployees at MGH to allow them easy access
to the hospital data systems. Rigorous and robust Institutional Review Board and data
management processes are implemented to enable the work.Most important, there is extensive
effort to constantly identify, understand, and integrate new relevant data sources. The
collaboration team has already integrated very rich data frommultiple modalities and sources.
This includes, among other things, clinical orders and records, unstructured clinical notes,
scheduling data, claims, operational time stamps recorded in the EMR, RFID data, and even
computer click-level data. The integration of the data enables first-of-a-kind analytics and
analyses that are often key to the development and implementation of the innovative system-
level solutions and processes.
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2.3. Key Success Drivers
The goal of this section is to briefly highlight several key success drivers that enable the
implementation of system-level, analytics-driven innovation, particularly in the context of
collaborative research work between academics with analytics expertise and large healthcare
delivery systems. Some of the subsequent key success drivers are likely to be relevant in
broader settings.

2.3.1. Organizational Interface and Senior Leadership Involvement. One of the
common failure modes of collaborative efforts, particularly related to the ultimate ability to
reach field implementation and more generally obtain overall impact, is the lack of an ap-
propriate organizational interface to the health system and leadership involvement. Specif-
ically, because of the organizational complexity of health systems and the entrepreneurial
research culture, particularly at AMCs, it is not uncommon that interactions with individual
clinicians could give the wrong impression regarding the importance of the underlying
problems that are being addressed and their corresponding system-level root causes. Another
challenge is the potential cultural and language gaps between analytics experts and clinicians.
Although there is no unified recipe to build the appropriate organizational interface and
leadership involvement, and the process of creating those could take time and evolve grad-
ually, there are still several key issues and questions that should be addressed. One key input is
an assessment regarding where the specific interfacing unit and individuals are placed within
the respective health system, and what their organizational perspective and decision power are
likely to be. The latter requires very good understanding of the structure, dynamics, and
decision-making processes of the relevant health systems. In general, there should be
a reasonable match between the proposed scope of the collaboration and what is realistic to
expect from the existing organizational interface. Finally, it is important to develop a common
language and mutual understanding of the different cultures.

2.3.2. Focus on Decision and Workflow Processes. Another common failure mode of
collaborative research efforts is the lack of clarity as to which underlying decision processes are
studied and addressed. In fact, as much as analytics could be a key enabler of system-level
innovation, it is important to realize that it is only a means to an end. The ultimate goal should
always be defined as the development of improved system-level decision and workflow pro-
cesses. Too often efforts are focused on the development of advanced analytics tools, such as
sophisticated predictive models, without sufficient (or any) understanding of the underlying
decision and workflow processes. As an example, consider the relatively extensive work
conducted on predicting the length of stay (LOS) of patients in hospitals (Azari et al. [15],
Barnes et al. [16], Carter and Potts [24], Gustafson [37], Liu et al. [59], Morton et al. [66],
Robinson et al. [73], Tu and Guerriere [86], Walczak et al. [89]). Most of these algorithms are
not very useful, as it is not at all obvious how a prediction of LOS can be leveraged to improve
hospital operational and clinical decisions. In fact, in most hospitals, current decision and
workflow processes cannot leverage predictions of LOS that are conducted many days before
the patient is actually supposed to be discharged, unless they are very accurate (see a more
detailed related discussion in Section 4). Another typical example is work that does not
incorporate first-order hard constraints that stem from either clinical or cultural factors. For
example, theoretically speaking, the “optimal” surgical schedule in a hospital will likely include
surgeries on each one of the days of the week, including Sunday. However, this is not likely to
be conceivably feasible because of a blend of cultural and logistics reasons. Thus, it is critical to
integrate data and analytics within the system’s context and have deep understanding of the
relevant clinical, organizational, and cultural factors. More examples of such constraints are
provided throughout the discussions of the different vignettes.
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2.3.3. Data Availability and Interpretation. Another key aspect is the availability of
data, which can be a major barrier for implementing change or even conduct meaningful,
analytics-based work. Once data are accessible, it is key to develop a deep understanding of the
underlying system’s context and related workflow processes to have appropriate data in-
terpretation. In particular, most of the data leveraged to conduct analytics work in health
systems is generated by clinical and operational processes that are system specific. This is
critical to be able to use data appropriately. For example, consider analytics work that is
concerned with patients’ delays and wait times in the emergency department (ED). A typical
reason for patient delays in the ED is the lack of available hospital beds. As such, it would be
natural to assess the respective wait times based on the typically recorded time stamp of the
first time a bed was requested for the respective patient by the ED team. However, hospital
systems are often highly utilized, and clinical teams, anticipating long delays, could be
tempted to aggressively place bed requests well before the respective patient is clinically ready
to leave the ED. Not accommodating for these endogenous dynamics can easily lead to false
analyses and ineffective analytics tools.

2.3.4. The Integration of Expert Inputs and Analytics. Current clinical and oper-
ational decision and workflow processes center around the dynamics of humans providing
service to humans. This human-to-human interaction is a key characteristic of health
systems with deep cultural roots. Moreover, the human service providers in health sys-
tems are typically highly qualified experts that are often trained around the premise of full
individual autonomy and ownership of decisions related to the care of their patients.
Moreover, there is often individual ethical and legal liability imposed on providers. All of
this makes the appropriate integration of analytics and decision support tools with experts’
input critical to the ability to ultimately implement them. The integration of expert inputs
is central to multiple design aspects in the development of analytics and decision support
tools. First, it should affect modeling and methodology choices with clear preference to
interpretable models and tools. Second, it should affect the tools’ outputs that need to be
adapted to match the decision and workflow processes used by (or at least natural to)
clinicians and staff members. Finally, the integration of data and model inputs with
experts’ input is a nontrivial task and, in fact, often presents some important open research
questions.

2.3.5. Focus on Trade-offs and Improvement Opportunities. Whereas traditionally
academic disciplines related to analytics are often focused on the notion of optimal solutions,
this notion often does not exist in complex health systems that operate under multiple and
likely contradicting objectives and metrics. Thus, most attempts to develop tools and models
that prescribe specific optimal solutions are likely to fail. Instead, decision support tools that
are designed to enable and support organizational efforts to improving systems and processes
are far more attractive. In particular, such models should provide and support at least three
functions:

i. reliable predictions of the anticipated outcomes of different decisions (“what-if analyses”),
ii. highlighting of decision trade-offs, and
iii. identification of system-level improvement opportunities.

To implement these functions, there is need to consider not only the “mathematics” of the
underlying tools but also, and equally important, the “communication” aspects of the tool. The
latter includes consideration related to data visualization and the creation of appropriate
dashboards.
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3. Vignette 1: Outpatient Capacity Management in an
Infusion Center
We begin our first of three vignettes by focusing on the example of an outpatient infusion unit
at Massachusetts General Hospital (Lennes et al. [55], Reib [72], Zenteno Langle et al. [94]).
The effective management of outpatient healthcare resources is an area ripe for the application
of data-driven, practically implementable operations research methodologies. This is partic-
ularly true in light of growing interest in and demand for systems-based care wherein areas
such as centralized resource planning and population health management are critical com-
ponents. In this section, we will illustrate several key principles related to outpatient capacity
management in the context of infusion centers.

3.1. Overview
One of the cornerstones of modern cancer treatment is chemotherapy administration, which is
most often administered through intravenous infusion or through pills in an outpatient facility
or infusion unit. In addition to chemotherapy, patients also receive related or supportive
therapies in the infusion unit such as blood transfusions, hydration, antibiotic therapy, and
pain management treatments. With these combined, infusion appointments may last any-
where between 30 minutes and 12 hours. Treatments are generally scheduled in series up to
6 weeks in advance, with checkups with the clinical team before some of the infusion visits to
ensure that patients are strong enough to receive treatment or that they are responding well
to it.

TheMGHCancer Center (CC) has over 100medical oncologists and nurse specialists spread
across multiple divisions, and it operates 60 chairs in its main campus outpatient infusion unit.
In 2013, this infusion unit was experiencing a 2.5% annual growth rate in the number of
infusion appointments and, at the same time, severe overcrowding every weekday, especially
between 10 a.m. and 2 p.m.; the unit was underutilized otherwise (see Figure 1). During
congested hours, patients would experience long wait times, and staff members would be
severely strained, creating frustration, job dissatisfaction, and concern for safety issues.
Moreover, even though resources were clearly underutilized at the beginning and the end of the
day, the unrelenting midday congestion created a false perception of insufficient capacity,
effectively preventing volume growth and reducing access to care. This disproportionate
midday appointment load is not an uncommon problem for large oncology infusion units.
Indeed, some cancer centers are actively asking patients to try to book appointments at the
beginning or at the end of the day to avoid crowded hours (Dorland et al. [29]).

Figure 1. (Color online) Average scheduled daily utilization (initial state).

Notes. Average number of scheduled occupied chairs by hour into the day (!1 standard deviation) for
preimplementation phase. Physical capacity is 60 chairs.
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To target this problem, we designed a data-driven online scheduling algorithm that aims at
generating a more balanced, and thus more predictable, intraday resource utilization. The
study is based on a detailed patient flow analysis of the infusion unit’s patient flow and its
relation to the CC clinics that refer patients to it.

3.2. Initial Analysis
The Cancer Center patient flow is highly complex, as patients need to coordinate appoint-
ments within many different areas, depending on their clinical needs. In general, patients
typically need to get their blood drawn and wait for the results to inform whether they are in
adequate clinical conditions to receive chemotherapy. Next, they may see their oncologist or
a nurse practitioner to review the treatment plan (practice-to-chemotherapy, or PTC, visit) or
go directly to infusion for treatment (infusion-only).

At the time of this study, the practice and infusion unit operated separate, in-house
scheduling services. When a patient’s oncologist ordered an infusion regimen, the patient
would receive a list of dates in which her PTC and infusion-only visits should occur. The patient
then would proceed to meet with a scheduler in the practice who, in turn, would call a scheduler
in the infusion unit to coordinate with the patient. Thus, the practice scheduler had no visibility
of the infusion unit utilization when requesting appointments. Additionally, schedulers, who
often develop relationships with patients, would regularly offer what is perceived as convenient
times for patients, or try to accommodate their preferences as much as possible.

Myopic scheduling is not unique to MGH; previous studies have identified that failing to
incorporate the utilization of the appropriate resources into appointment scheduling practices
is a main inefficiency driver in outpatient infusion settings (Aboumater et al. [1], Chabot and
Fox [26], Gruber et al. [35], Kallen et al. [47], Turkcan et al. [87]).

In summary, scheduling infusion treatments presents the following challenges:

1. Multiresource scheduling.All visits require blood draws prior to treatment. Additionally,
three of four infusion visits are coupled with an appointment in the oncology practice, where
the patient is assessed before receiving chemotherapy.
2. “Online” scheduling. The coupled-appointment system requires the Cancer Center to

make scheduling decisions as the appointment needs are revealed. That is, each patient is
assigned both the dates and the times of her appointments at the same time.
3. Operational and clinical constraints. Not only does the schedule need to respect the

infusion unit constraints (e.g., nurse staffing levels) but also the clinic times in the oncology
practice, as well as pharmacy capacity where treatments are personally tailored to each patient
once he or she has arrived and been approved for treatment.
4. Patient-centered culture. There is a very strong practice of accommodating patient

requests and needs, sometimes in disadvantage of the system’s overall performance.
5. Schedule variability. The infusion unit accommodates previously unknown treatments

that are added to the schedule on the same day, same-day cancellations, or modifications to
treatment as a result of the patients’ clinical conditions. Additionally, it provides treatment for
patients that are part of clinical trials, for which the treatment is highly nonstandardized.

3.3. Solution Approach and Related Work
The problem of scheduling a new infusion (of known duration) on a specific day (1) given an
existing collection of scheduled infusions and (2) with the objective of minimizing the peak
utilization during the day can be naturally modeled as an online optimization problem. Such
a framework is useful for several reasons:

1. It gives a correspondence between the online (true) version of the problem and its offline
(optimistic) counterpart. Consequently, the offline mixed integer optimization problem of
minimizing peak utilization given the entire collection of infusion appointments scheduled
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during the day provides a lower bound on the best possible online policy. This can sub-
sequently be used as a benchmark in simulated comparisons. Furthermore, the solution to the
offline problem provided insights into what a “good” schedule looks like and ultimately guided
the design of the online algorithm.
2. It accommodates the introduction of constraints. In light of the observations made

earlier, some of the constraints include respecting clinicians’ schedules (for the infusions that
are “linked” to clinician appointments) and only scheduling “sensitive” chemotherapies1 toward
the middle of the day when the most resources can be made available.

3.3.1. Related Work. There is a rich body of literature on online algorithms for sched-
uling (see references in Jaillet and Wagner [44]) as well as scheduling applications in the
healthcare setting (e.g., Cayirli and Veral [25], Gupta and Denton [36]). Scheduling of
chemotherapy infusions has also received a variety of attention, including for treatment
planning (e.g., Agur et al. [3], Shi et al. [79]) as well as other inter- and intraday scheduling
considerations (e.g., Gocgun and Puterman [33], Santibáñez et al. [76]).

Although some of the techniques and principles of our work are common to the studies
mentioned above, the main difference is that we focus on building an intraday schedule in an
online fashion; that is, patients are told the date and time of their appointment at the same
time. This is important for theMGHCancer Center Administration because, following patient
preferences, the practice and the infusion appointments occur on the same day, which implies
that both of them need to be booked simultaneously. This is contrary to the approach of other
centers, where these appointments are decoupled to reduce delays and wait time. Also, in our
study we did not attempt to determine the dates in which patients receive treatment, as this
interday timing is typically guided by clinical guidelines.We take these as given and determine
only the times of their appointments. Finally, although we do not account for pharmacy and
nursing resources explicitly in our model, minimal adjustments to their current setup are
shown to be enough to accommodate the proposed solution.

3.3.2. MinGap Policy. A simple heuristic that we refer to as “MinGap” was devised to
(approximately) solve the online optimization problem; namely, given an existing collection of
scheduled infusions for a day and a new appointment needing to be scheduled,

1. select the appointment time that minimizes the gap between the (max) peak utilization
and (min) trough utilization during that appointment while not increasing overall peak uti-
lization during the day; and
2. in the case that all feasible appointments increase overall peak utilization, choose the one

that minimizes the gap between the peak utilization and trough utilization during the
appointment.

Figure 2. (Color online) Smoothed average daily utilization.

Note. “Original” as in Figure 1, “Retrospective” is the optimal offline policy, and “Prospective” is the
MinGap policy with a single option offered.
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Despite its simplicity, the MinGap policy seems to perform exceptionally well relative to an
offline optimal solution (for comparative performance in a simulation, see Figure 2). Moreover,
the resulting projected distribution of appointments worked well with other key components of
CC’s working model: primary nursing, pharmacy, and ancillary staff. The CC’s Infusion Unit
follows a primary nursing model, under which patients are matched with a primary nurse with
whom their subsequent infusion appointments are preferentially, though not exclusively,
scheduled. This model aims to increase continuity of care and improve patients’ overall
experience. Although this was not an explicit constraint in our model, given that most nurses
have 10- to 12-hour shifts, distributing appointment start times throughout the day mostly
helped patients to get appointments with their primary nurse. The additional load of ap-
pointments at the beginning and tail-end of the day could also be worked out by redistributing
existing resources in staggered shifts.

Finally, another key aspect of the MinGap policy is that it can be adapted to offer patients
more choice. In particular, the algorithm can rank possible appointment start times according
to how much they minimize the gap between the peak and the utilization throughout the
treatment duration. In this way, schedulers give patients a more active choice in their treatment
planning while offering the best possible appointments from a resource-utilization perspective.

3.4. Implementation and Outcomes
One of the critical barriers to implementation (and innovation) of operations research projects
related to scheduling in healthcare applications is the connection between the EMR and the
scheduling algorithm/software. This is particularly difficult because the EMR software system
is often owned by a third-party vendor, thus raising issues surrounding intellectual property and
ownership if any direct modifications were to be made to the EMR. Furthermore, most EMRs
have built-in scheduling capabilities, which complicates the decision of whether to implement
a stand-alone system. Such a system would necessarily require both reading data contained in
the EMR and feeding any scheduling decision back to the EMR, as this acts as a reference point
for other departments that may want to schedule appointments for the same patients.

Eventually, leadership opted to partner with the MGH Laboratory for Computer Science to
create a stand-alone web-based application that connects to the hospital’s EMR. The resulting
tool, called “OptIn” (for “Optimized Infusion”), retrieves real-time data from the EMR, in-
cluding basic patient, infusion, and clinician information; checks for available appointment
times; runs the heuristic; and offers up to four appointment options in sets of two for the

Figure 3. (Color online) Average pre- and postimplementation scheduled utilization.

Note. Average number of scheduled occupied chairs by hour into the day. “Pre” is before implementation
of the OptIn tool (October 2016–April 2017); “Post” is after implementation of the tool (January
2018–December 2018).
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selected appointment date (whenever possible), ranked as described above. The scheduler,
who speaks with the patient, is instructed to offer these appointments. If none of these work for
the patient, the scheduler may choose to override OptIn and select a different set of ap-
pointments. The final choice is then placed in the EMR.

OptIn was rolled out in phases in the spring of 2017. Since then, its implementation has had
a marked effect on the scheduled utilization (see Figure 3 and Table 1). There are several
observations of (statistical2) significance:

1. The average number of scheduled patients per day has increased by 9.5%, from129.7 to 142,
and the average number of scheduled chair hours per day increased by 8%, from 363.5 to 392.8.
2. Previously, the peak average chair occupancy occurred at 11:30 a.m. Following OptIn,

this has decreased by an average of 4.6 chairs, a noticeable reduction at the previously most
congested time of the day.
3. Previously, the infusion center had a standard lunch break time, leading to a decrease in

scheduled chair occupancy around noon that rebounded at 1:00 p.m. On the basis of the
findings of this project, staff lunch breaks were changed to be staggered; as a result, after
implementation, the average occupancy at 12:30 p.m. has increased by 6.6 chairs.
4. Average scheduled occupancy has increased in the early morning and afternoon hours.

For example, at 5:00 p.m., the average occupancy has increased by 6.9 chairs. This suggests
that the OptIn approach has made more effective use of the underutilized chair time.
5. Even with the increased visit and chair hour volume, the average chair hours that each

patient actually spends in the infusion unit decreased from 3.6 hours to 3.1 hours, signaling the
reduction of operational delays as resources are used more evenly throughout the day.

These results reflect all scheduled appointments during calendar year 2018, regardless of
whether OptIn system’s recommendations were followed. The average adoption rate of the
system is approximately 74%.

We close this section by commenting that this set of results is only a small part of the ongoing
discussion surrounding the use of this work in the infusion center. Indeed, related analysis of
staffing levels, actual versus scheduled utilization, and compliance with the OptIn system,
among many other interrelated topics, are all critical to the continued success of the effort.

3.5. Discussion
The case of the infusion center scheduling redesign involves several features that are relevant
to management of outpatient resources more broadly. One such aspect relates to the fun-
damental task at hand—namely, that it is necessary to build a process and not just amodel. In
particular, it is critical to develop an intimate knowledge of the underlying processes in order to
understand precisely what the impact of underlying model assumptions are and, consequently,
whether the model’s implications are valid. For example, a model that fails to incorporate
information about the “linked” infusion appointments would not realistically capture a central,
complicating aspect of the system.

Furthermore, it is necessary to understand proactively how a proposed solution might affect
the system as a whole. For example, what burden does this place on existing staff, and how

Table 1. Average pre- and postimplementation scheduled utilization, by the numbers.

Period Median patients/day Median chair hours/day Median peak

Pre 134 375.5 54
Post 146 402 53

Note. Differences between “Pre” and “Post” distributions of these three measures (number of patients per day, number
of chair-hours per day, and peak number of chairs) are statistically significant at the 0.05 level via a Kolmogorov–Smirnov
test for equality of distributions.
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does it incorporate into their workflows? As discussed in Section 2, these are absolutely critical
components to address in order to ensure that a solution is not only implemented but also can
actually be sustained over time. Along the same lines, designing tools that can interact with
a health system’s EMR is crucial. Although the current version of OptIn can only read in-
formation from the EMR, its easy-to-use interface is a good incentive for schedulers to use the
tool; this is especially true for new staff, who are not yet familiar with all the intricacies of
infusion scheduling. For members of the operations research community, such work should not
be seen as a roadblock or obstruction to their creative work; instead, we see this as an op-
portunity to design effective, practical, and innovative solutions that can also influence the
direction and scope of the operations research field.

Another aspect of the infusion center example relates to the management of patients’
preferences and overall capacity. In particular, given the scarce nature of capacity
(i.e., resources), the behavior of granting patients’ preferences for midday appointments has
led to a system that is congested midday and otherwise underutilized. In other words, the
decision made by individual patients can have, in aggregate, an adverse effect on the system as
a whole. The approach taken herein suggests one way of mitigating some of these effects while
increasing access to these scarce resources to a larger number of patients than was previously
possible. Finally, it is important to note that this approach actually increases the number of
appointments that can be scheduled under the primary nursing model; consequently, this
approach has potential net benefits for all patients, not just those who might otherwise not
have been able to be scheduled.

Finally, we conclude this vignette by noting the findings from this have been deployed in
several other settings at MGH. On one front, this approach has been used to change the
scheduling practices at outpatient infusion centers at two affiliated hospitals. On another
front, it has also helped drive the creation of an entirely new infusion center at MGH (Ghobadi
et al. [32]) for other infusions not necessarily related to oncology.

4. Vignette 2: Discharge Prediction and Inpatient
Capacity Management
In the second vignette, we turn our attention to the inpatient setting and the problem of
managing inpatient capacity. In particular, we focus on a redesign of the discharge process for
surgical patients at MGH by predicting hospital discharges in the next 24 hours. For complete
details of the relevant work, see Safavi et al. [74] and Zanger [91].

4.1. Genesis of Work
As hospitals continue to grapple with increased demand for their services together with intense
pressure to control costs, operational efficiency has become a key element to provide timely
access to existing inpatient resources. This is particularly true for hospitals such as MGH that
frequently operate at or near operational capacity. The inpatient floor beds of the hospital are
the common destination for the major sources of patient inflow to the hospital. Without beds
available, this flow is disrupted, and the hospital’s ability to serve patients is threatened.

In the United States, patients in the ED may spend many hours or even days waiting for
a bed, a phenomenon that has been associated with delays in care and increased mortality. In
parallel, patients in the intensive care unit (ICU) who have recovered from their critical illness
cannot be transferred to the inpatient floor, causing the ICU to fill up with those who do not
need its services, thus denying precious beds to the sickest patients in the hospital. A similar
chain reaction occurs for patients who are in the postanesthesia care unit (PACU) recovering
after surgery. After their recovery, patients in the PACU and requiring admission to the
hospital are transferred to the inpatient floors, but if beds are unavailable, they remain in
place, denying those beds to upstream patients completing their surgeries in the operating
room. As a result, the operating room becomes stagnant, and new patients cannot receive
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surgery. Finally, large academic centers provide a regional service by receiving patients from
smaller outlying community hospitals when the patient’s needs exceed their available ca-
pabilities. Large medical centers may be the only location where the expertise and technology
exists that they need. Without beds available at the large medical center, this critical route is
closed off, and patient care may be significantly delayed.

With these pressures being experienced on a near daily basis, bed capacity management has
become critical for large medical centers to fulfill their mission to serve patients. To continue to
fulfill the demand for their services, hospitals must increase the efficiency with which they
transition patients through their stay. One critical aspect of hospital outflow is the patient
discharge process. This is the process whereby patients who are nearly ready to leave the
hospital receive the remaining care they require just prior to being safe for transition home or
to a posthospital facility. This critical release valve for the congested inpatient floors is a major
focus of large medical centers. However, one of the central complicating factors in addressing
discharges is that the discharge process is often managed on a floor-by-floor or team-by-team
basis; this is in stark contrast to elective surgical admissions, which form a large part of the
hospital inflow, that are often scheduled in advance and centrally managed.

To be performed efficiently, the discharge process requires transparency, prioritization, and
coordination. There must be transparency into which patients should be considered for
discharge each day and which barriers remain to be addressed. Furthermore, there must be
a scheme to prioritize the remaining care that should take place so that the resources of the care
team can be allocated in a timely manner that enables discharge the same day. Finally, to
perform this work, there must be coordination across amultidisciplinary team that is unified in
its understanding of which patients to focus on and what to focus on doing.

4.1.1. Discharge Processes at MGH. In its current state, MGH relies on diverse,
multidisciplinary clinical teams to perform the discharge process without a standard, data-
driven process. Clinical teams manually perform the task of identifying which patients are
candidates for discharge each day. This process is time consuming and based on the subjective
input of teammembers. Despite discharge requiring numerous teammembers to perform tasks
and coordinate their efforts in a timely manner, the current process does not allow for
transparency in which patients have been identified or their remaining barriers to discharge.
Furthermore, this manual process is time consuming and takes teams away from numerous
other care priorities such as attending to acutely ill patients on the inpatient floors. All of this is
further complicated by the fact that surgical patients at MGH are on over a dozen inpatient
floors spread across five buildings, and any one attending physician can have patients in
multiple physical locations, each being cared for by a different nursing team.

As a consequence, the discharge process is highly inefficient.Without a standardized process
to identify patients and their barriers, the likelihood for intraday and interday delays in
patient discharge is substantial. Moreover, without systematically identifying expected dis-
charges each day, it is impossible for care teams to study their discharge processes and
performance relative to an expected standard. This means that teams and hospital admin-
istrators are blind to their performance and the factors that lead to a lack of discharge, making
improvement extremely challenging.

4.2. Model Development
To address these challenges, we developed a discharge prediction app (“DPA”). Each day, the
DPA predicts which patients will leave the hospital within 24 hours, thereby providing
transparency into which patients are candidates for early discharge and enabling clinical teams
to leverage its information to increase transparency, prioritization, and coordination in the
discharge process. In this section, we detail the development of the DPA predictive model,
highlighting underlying principles in its development and execution.
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4.2.1. Principles of Model Design and Development. To be successful, the DPA’s
model had to receive inputs that were aligned with those that clinical decision makers use to
identify patients who are candidates for discharge. Moreover, such a model design would need
to create outputs that are aligned with the clinical intuition that decision makers use and are
thus aligned with downstream actions by clinicians.Without such an alignment, themodel not
only risks lacking the inputs to make accurate predictions but also may create an output that is
not interpretable by clinical team members or connected to important downstream actions. In
other words, consistent with the principles of Section 2, the DPA needed to be developed with
a focus on existing workflows and data sources while ensuring that the data were interpreted in
its appropriate context.

Themodel was developed in two stages along these lines. First, clinical leaders on the project
team helped serve as proxies to the clinical decision makers responsible for the discharge
process. These teammembers developed a framework for the selection of data inputs such that
each data element selected would be relevant to understanding whether the patient was
a candidate for discharge. As a result, data inputs superfluous to the discharge process needed
to be eliminated. The framework classified data as either representing milestonesmarking the
patient’s progression toward discharge or barriers that must be surmounted prior to the
patient being safe to transition out of the hospital. For example, the ability of the patient to eat
a regular diet after abdominal surgery represents a significant milestone in the patient’s
recovery from surgery and a behavior that marks a sustainable posthospital state in which the
patient can be independent of hospital care. By contrast, when a patient has a fever, these data
are interpreted with great caution by clinicians, as they may represent the early signs of a new
infection and require further diagnostic testing and evaluation for which the patient most often
needs to remain in the hospital.

4.2.2. Technical Considerations and Model Output. Using the framework of
“milestones” and “barriers” led to hundreds of input feature variables sourced from the EMR,
including demographic, administrative, clinical, and environmental data. These data were
used to frame a prediction problem of predicting the likelihood of any individual patient to be
discharged within 24 hours. We considered a variety of possible classes of binary-classification-
based predictive models for such a task, such as (regularized) logistic regression and feed-
forward neural networks (multilayer perceptron) with slightly more complex architectures.
We ultimately selected a neural network model using standard software packages and cross-
validation criteria of the area under the receiver-operating characteristic curve (AUC),
a measure of a binary classification model’s discriminative ability.

The resulting model, which we refer to as the DPA, assigns to every patient in the hospital
a prediction score that is correlated with his or her likelihood of discharge within 24 hours.
Each morning, the DPA provides clinical teams with the following:

1. a ranked list of patients in order of their likelihood of discharge that day that can be
sorted by hospital floor, clinical service, and responsible physician;
2. a ranked list of patients in order of their likelihood of discharge the next day;
3. a daily prediction of the total number of patients that will be discharged that day; and
4. a comprehensive list of barriers to discharge, shown for each patient, such as abnormal

laboratory results, imaging studies that are pending completion, physical therapy needs, or
insurance approval issues.

The initial list of barriers shown was generated as follows. Among those barriers present,
which ones (if resolved) result in a higher likelihood of being discharged? By looking one
at a time over all possible barriers, a list of barriers can be generated for every patient.
This scheme, although simple, provides a first approximation to interpreting the results of
the DPA.
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4.2.3. Further Model Development. In the second stage of the model development, we
sought to include the multidisciplinary clinical teams who would ultimately be the end users of
the DPA. The aim was to elicit differences existing between the model’s outputs and the
intuition of clinical team members, including physicians, nurses, physical therapists, case
managers, social workers, and others. Each of these team members holds a unique expertise in
perceiving the many different aspects of what may prevent a patient from being discharged
from the hospital.

During a 100-day period, the output of a preliminary version of the DPA was provided to
members of this multidisciplinary team during their daily morning conference. Teammembers
were instructed to review the list and determine whether they would agree that the patient was
a candidate for discharge that day. Moreover, for patients who were not identified as likely to
be discharged, the team was instructed to identify candidates who they saw as likely ready for
discharge that day. Finally, project and clinical team members discussed for each of these
patients which barriers to discharge were relevant and compared these with the barriers
displayed by the DPA. Over the course of this period, over 40 additional data items were
identified that were added to the predictive model, each of which was aligned with the clinical
intuition of the members of the clinical team.

Another focus of the prepilot stage was in understanding whether the barriers to discharge
displayed by the DPA were represented in a manner that was interpretable, relevant, and
actionable for the clinical team members. Given the limited time of clinical team members to
devote to discharge assessment and execution, it was critical to display only highly in-
terpretable and actionable barriers. For example, physical therapy–related barriers are highly
relevant to discharge decisions. In addition to making for a stronger and more easily in-
terpretable model, the project team needed to understand the broader process and workflow
within which the DPA would be incorporated. This knowledge was important to making
critical implementation decisions.

For example, the time at which the DPA would need to provide its output was based on when
key decision points weremade throughout the day related to discharge. There was a balance that
needed to be struck between having the output available for team members to use during these
critical decision points versus includingmore information about the patient as it became available
later in the day. The later the prediction, the more information the model would have to work
with and, potentially, the stronger the prediction. It is important to note that, however, such
a model would be accurate though useless to decision makers on the clinical team. Ultimately, it
was determined that the DPAwould need to be available for when the care team rounded at 6:00
a.m. This time represented the one critical time point where the nurse and physicians wouldmeet
for each patient to discuss the plan for the day, including which candidates should be discharged
and what care would be required to get them to that transition point.

4.2.4. Final Model Selection. Based on the two stages of model development, the final
version of the DPA used more than 900 feature variables. Consistent with earlier model
development, the model architecture was selected using cross-validation, resulting in
a relatively simple neural network architecture with a single hidden layer. All together, the
final model selected had an out-of-sample AUC of 0.84.

Furthermore, it is worth noting that there are a variety of competing metrics of interest that
need to be used to inform the final choice of model. These should be considered in the context of
the process described above. Specifically, the question is how to use the model to generate the
list of predicted discharges to the clinical teams andwhat the relevant performance metrics are.
The DPA generates a likelihood prediction 2 ½0; 1#for each patient; we must either choose to
list a fixed number of patients who we believe are likely to be discharged or present all patients
with a likelihood above some threshold. Each of these algorithmic choices has practical im-
plications for metrics such as false-positive rate, false-negative rate, and so on, and these need
to each be considered carefully in turn to guide the final results presented to clinicians.
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With the selected neural networkmodel, we elected to present all patients with a score above
a threshold ! , where ! was chosen so that the corresponding true-positive rate was ap-
proximately equal to the positive predictive value; equivalently, ! was chosen so that the
number of predicted positives (true positives and false positives) was equal to the number of
actual positives (true positives and false negatives). Based on this criterion, the final threshold
chosen was ! ¼ 0:5. With such a threshold, the out-of-sample true-positive rate was 0.512, the
true-negative rate was 0.855, the positive predictive value was 0.565, and the negative
predictive value was 0.827. Each of these metrics has its own interpretation; for example, the
true-positive rate of 0.512 means that on a patient’s day of discharge, the DPA correctly
identifies that patient as being likely to be discharged 51.2% of the time.

From the use of the DPA, there are a variety of specific hospital metrics that can be
impacted and are measurable. Examples of these include

1. the rate of early morning discharges,
2. the overall average hospital length of stay,
3. the rate of critical ED congestion events,
4. the total number of outside hospital transfer diversions,
5. the frequency of ED boarding (patients waiting in the ED for a floor bed more than two

hours after the decision to admit),
6. the frequency of ICU transfer delays, and
7. the frequency of PACU transfer delays.

We conclude the discussion of model selection by pausing to reflect on the fundamental
prediction task at hand. In particular, per the setup above, the DPA predicts whether a patient
will be discharged; that is, it predicts the decision to discharge a patient. It is worth noting
that, this is not the same as predicting whether a patient is clinically ready to be discharged
from the hospital. This suggests that “false-positive” predictions from the DPA might actually
reveal opportunities for system-level improvements in discharge processes. Indeed, as dis-
cussed later regarding outcomes, we found this to be the case.

4.2.5. Related Work. There has been significant historical interest in the problem of
predicting how long patients will stay in the hospital (Azari et al. [15], Carter and Potts [24],
Gustafson [37], Harutyunyan et al. [38], Huang et al. [43], Jiang et al. [46], Liu et al. [59, 60],
Mohammadi et al. [65], Morton et al. [66], Robinson et al. [73], Tu and Guerriere [86], Walczak
et al. [89]). Although these models can provide insight into the drivers of long length of stay,
they can be difficult to translate into actionable, operationally focused tools that can guide
the day-to-day management of bed capacity. In light of those challenges, there has also
been work to predict likelihood of discharge within some time window (Barnes et al. [16],
Levin et al. [56]).

The work described herein differs from the related work in several key ways. First and
foremost, our approach has focused on the design of an operational tool that can guide day-to-
day decision making. Furthermore, the framework of milestones and barriers to discharge
allows us to present results that directly reflect clinically meaningful indicators for the dis-
charge process as opposed to raw, unprocessed clinical information. Finally, this work utilizes
a significant and diverse array of data sources for the prediction task using the same EMR data
that drive clinical decision making.

4.3. Implementation and Ongoing Work
The DPA was implemented in several phases with differing objectives in each instance. As
discussed above, the prepilot phase focused on using a preliminary version of the model to
provide output to a multidisciplinary team of key stakeholders representing different aspects
of the discharge process. This process was instrumental in creating a dialogue between various
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stakeholders and in gathering feedback on which data elements are (and are not) reliable
indicators of clinical measures.

4.3.1. Pilot Implementation. Following the model development phases, the improved
DPA was deployed without providing predictions to end users. That is, it did not require
anything from frontline clinical teams, including using the DPA or altering their workflow.
The aim of this pilot was to measure the potential impact of the DPA by quantifying the gap
between predicted discharges and actual discharges and subsequently identifying the root
cause of these mismatches. The mismatches were subcategorized (using a manual case review
by clinicians) into those that represented acute changes in the clinical status of the patient
appropriately requiring additional days in the hospital versus scenarios in which the care team
could have discharged the patient with an improved process.

One of the most important, though not initially anticipated, outcomes of the DPA was that
it created an entirely new “database” that could enable identification and classification of
problems plaguing the discharge process. The initial conception of the value of the tool was
around its real-time use to impact discharge efficiency. However, the DPA also identified
dozens of cases each day in which a patient was not discharged despite being predicted as such
by the tool (i.e., “false positives”). Thus, the DPA automatically created a cohort of patients for
further study into why patients did not get discharged on the day they were expected to be.
Such an analysis of this cohort is particularly useful for understanding and quantifying
variation in clinical pathways for patients (see Safavi et al. [74]).

This retrospective analysis of the tool’s output and its mismatch within the reality of clinical
practice proved invaluable to identifying process improvement themes that were previously
invisible to the hospital. As such, it provided the project team the ability to study individual
groups of patients within the hospital being taken care of by different specialties of teams, each
of which had different discharge workflows and processes and each with their own strengths
and weaknesses. Without requiring anything from the clinicians, the DPA allowed the project
team and, ultimately, senior leadership to study the discharge inefficiencies in each service
prior to the implementation of the tool. Although some of these challenges can be addressed
using the DPA, others require the application of different sorts of process improvement tools.

4.3.2. Ongoing and Future Work. Following the pilot implementation, there has been
work on a variety of fronts to improve the DPA and expand its scope. Here, we consider a few
aspects: transition to a real-time predictive tool, use by clinical teams to guide workflow, and
expansion of the patient population for the DPA.

As noted earlier, the DPA was initially designed to provide predictions early in the morning
(about 6:00 a.m.) for use in morning rounds by clinical teams. However, there are other po-
tential uses for the DPA at different times in the day. For example, the DPA could provide
another output at 8:30 a.m., when multidisciplinary rounds would take place involving the case
managers, social workers, physical therapists, and physicians. As another example, at 3:00 p.m.,
the DPA could provide clinical team members with an opportunity to touch base about
patients who were expected to leave and their status as well as what challenges arose during the
day and whether the patient would be a candidate for early morning discharge the following
day. Transitioning to such an approach requires using live data streams that are continually
updated, as opposed to the nightly updates that have been used in our previous DPA work.
Such a transition requires a variety of work and technical support in validating data and
understanding the database structures and design necessary to facilitate such a real-time tool.

On another front, we are actively working to incorporate the DPA into the workflow of
clinical teammembers. As part of this, the DPA has been piloted with inpatient floors’ nursing
directors and case managers with the aim of having these team members use its output to
actually impact the discharge process. This required these teammembers to incorporate a new
tool into their daily workflow, pay close attention to its results, and use the output to spark
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discussion among themultidisciplinary team. Furthermore, in combination with the transition
to a real-time DPA, we are also working with physicians to further validate the DPA and
integrate it into their workflows.

Finally, we have also been working to expand the DPA to a larger patient population
beyond surgical patients, such as general medicine patients or nonprocedural patients cared
for by surgical teams. This raises a variety of interesting clinical and technical challenges, as
there can be significantly more clinical variability in patients’ care pathways during hospi-
talization for the patient population at large.

5. Vignette 3: Managing the Inpatient-Outpatient Relationship for
Heart Failure Patients
In this final vignette, we turn our attention to the connection between resources in the
outpatient and inpatient settings, specifically in the context of managing chronically ill heart
failure patients. For complete details of the relevant work, see Al-Meer [5] and Furtado [31].

5.1. Heart Failure
Heart failure (HF) is a chronic medical condition that affects 6.5 million adults in the United
States (Mozaffarian et al. [67]). This progressive condition affects the heart’s ability to either
fill with or pump blood. HF commonly manifests with symptoms including shortness of breath,
fatigue, and swelling. The implications of HF can be devastating as the condition can affect not
only the entire circulatory system but also vital organs. Because of this, patients’ health
generally deteriorates over time after experiencing HF. Unfortunately, there is no cure for HF,
so it is important for healthcare practitioners to properly manage the condition to mitigate its
negative effects.

5.1.1. Heart Failure in the United States. The HF population in the United States has
steadily increased over time and is projected to increase by 46% from 2012 to 2030 to over 8
million people (Benjamin et al. [19], Heidenreich et al. [39]). HF patients generated more than
57 million HF-related hospital admissions from 2001 to 2014 (Akintoye et al. [4]). Hospital
length of stays for HF admissions are also longer than length of stays for other medical
condition admissions (Houchens et al. [41], Ziaeian et al. [95]). This has contributed to the
ever-increasing costs of HF treatment in the United States, which are projected to inflate to
$70 billion dollars annually by 2030 (Heidenreich et al. [39]). In an effort to control healthcare
costs, the Affordable Care Act introduced the Hospital Readmission Reduction Program
(HRRP) in 2012. This program provides financial incentives for hospitals to reduce read-
missions. As a result, many health systems have dedicated significant resources to reduce
readmissions, especially for HF, which has the highest rate of 30-day readmissions according to
Medicare studies (Jencks et al. [45]).

5.1.2. Heart Failure at Massachusetts General Hospital. MGH has approximately
50,000 hospital admissions every year, with 2%–3% of these admissions having HF as
a primary diagnosis. This percentage has steadily increased over recent years (see Figure 4).
Furthermore, HF hospitalizations account for a relatively large percentage (3%–4%) of the
hospital’s bed-days (see Figure 5). This is in part because HF admissions have longer average
length of stays compared with non-HF admissions (8.7 versus 5.9 days, respectively, in 2016).
Beginning in 2012, Section 3025 of the Affordable Care Act and the HRRP began reducing
payments to hospitals with excess readmissions. For this reason, many improvement efforts
around the nation are focused on reducing readmissions. However, MGH observes that only
20% of their HF admissions are readmissions. It is therefore important forMGH to find ways to
reduce all HF admissions. Furthermore, HF is classified as an ambulatory care–sensitive
condition, which means that effective ambulatory care can reduce utilization of inpatient
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resources. This claim is supported by many specialized HF clinics and HF management
programs reporting reduced hospitalization rates and shorter length of stays.

5.2. Outpatient Access for Heart Failure at MGH
Analysis of the care paths that MGH HF patients follow indicates that 90% of HF admissions
originate from ED visits, with 92% of these HF ED visits resulting in hospital admissions.
Examining the events preceding each HF admission from the ED, we see that in 51% of these
cases, the patient had no completed outpatient appointment (of any kind) 2 weeks prior to his
or her hospitalization. For patients who had a scheduled appointment during the 2 weeks prior
to their hospitalization, 21% of them failed to complete the appointment. This absence of
outpatient activity immediately preceding the HF hospitalization indicates an opportunity to
capture these patients through ambulatory interventions.

We also used scheduling and hospital admission data to examine scenarios in which patients
call in the week prior to their subsequent HF admission in order to schedule an outpatient
appointment. These individual cases can be categorized into two groups depending on the
appointment date: the appointment date is (1) before or (2) after the patient’s subsequent HF
admission. We first identify that the time between the initial call and the HF admission date
between these two groups is not statistically different. This suggests that there is no significant
difference in the urgency of the appointment requests in the two groups. The scheduling lead time
(the time between the call and the appointment date), on the other hand, is statistically different
between the two groups. In particular, cases in which the appointment date falls after the HF

Figure 4. (Color online) HF admissions at MGH, FY2013–FY2016.

Figure 5. (Color online) HF admission bed-days at MGH, FY2013–FY2016.
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admission generally had longer lead times (average of 14 days versus 1 day). These results suggest
that long outpatient appointment lead times are a potential contributing factor toHF admissions.

5.3. Predicting Heart Failure Hospital Admissions
To implement ambulatory interventions for reducing HF admissions, it is important to
identify high-risk HF patients in the primary care population. To this end, we developed
a logistic regression model with 32 covariates (see Table 2) to predict six-month hospital
admission risk. The model performance was evaluated using the standard receiver operating
characteristic AUC. The AUC of our model on out-of-sample data is 0.78, which outperforms
other comparable hospitalization risk models (Amarasingham et al. [6], Greenwald et al. [34]
Levy et al. [57], O’Connor et al. [70]).

5.4. Implementation and Next Steps
Upon review of the prediction model results, we believe using our prediction scores to flag high-
risk HF patients will allow primary care staff to more effectively triage and manage the
patients. These flags in the electronic health record will not only alert practice staff about
a patient’s HF condition when there is an encounter but also allow the practice to proactively
reach out to high-risk patients who may otherwise be out of touch with the practice.
Stratifying patients by their risk score will also help identify candidate HF patients for ad-
ditional healthcare services such as telemonitoring. We hypothesize that these cumulative
efforts will help HF patients be more engaged in an ambulatory setting and reduce their
likelihood of admission.

Table 2. Summary of heart failure model variables.

Category name Variable name

Patient characteristics Age Squared
Gender
English Speaker
Marital Status—Single

Medications Total Number of Medications
HF-related
Antipsychotic

Clinical indicators Blood Pressure
Pulse
Ejection Fraction
%1 EF Ever Recorded

Hospital utilization Cardiology Outpatient Visits
Overall HF Outpatient Visits
Time Since HF Diagnosis
Number of HF Hospital Admissions
Number of non-HF Hospital Admissions
Time Since Last EF Measure

Socioeconomic factors History of Substance Use Disorder
Estimated Income
Distance to PCP Clinic

Patient engagement Resident Owned
iCMP Enrollment
Number of Canceled/No-Show Appts
Patient Gateway Activity

Comorbidities History of Diabetes

Note. iCMP, or the Integrated Care Management Program, provides care coordination services to patients with
complex health issues at MGH.
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Although we have a clear objective of flagging high-risk HF patients, implementing these
flags in the EHR is surprisingly challenging. There is no simple feature in the EHR that enables
new visible flags in the banner of patients’ charts, and creating such a flag requires both
institutional approval and technical development that can span over a year from start to
finish. In the meantime, we have developed a workaround that enables us to display
a manually written free-text note in a patient’s chart that identifies him or her as a high-risk
HF patient. This is far from ideal, however, as it requires someone to insert the free-text note
into each patient’s chart individually. These types of technical challenges and obstacles further
highlight the fact that analytics are only a means to an end, as described in Section 2. Without
establishing the necessary interfaces for the analytics to be deployed and used, it is highly
unlikely that any meaningful impact will be achieved.

5.4.1. Next Steps. Sharing our findings with stakeholders in both the primary care and
cardiology departments has supported further collaborative efforts to improve comanagement
of HF patients between primary care physicians (PCPs) and cardiologists, redesign triaging
protocols to more effectively escalate patients’ HF-related complaints, and enable knowledge
sharing between the departments to establish HF management best practices.

6. Final Remarks
A tremendous number of problems that health systems face can be addressed using data
analytics and operations research techniques. However, most of the relevant literature in this
space typically ends at theoretical modeling, simulations, and analyses, but it does not reach
large-scale field implementations with tangible impact on practice.

This tutorial attempts to offer principles and key success drivers underlying a formal project
management framework established in partnership between MGH and MIT. The partnership
has used the aforementioned framework to successfully complete multiple projects over the
span of many years that have yielded system-level implementations driven by academic
analytics research.

Finally, the tutorial attempts to stimulate community-wide discussions about how col-
laborative models can be scaled to increase the academic footprint and impact of analytics-
related work on the healthcare industry.
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Endnotes
1Examples include chemotherapies being administered in high-risk clinical trials.
2All findings referenced herein are statistically significant at the 0.05 level as measured via the Kolmogorov–Smirnov
test for equality of distributions.
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[27] T. C. Y. Chan andV. V.Mǐsić. Adaptive and robust radiation therapy optimization for lung cancer.
European Journal of Operational Research 231(3):745–756, 2013.

Copenhaver et al.: Health System Innovation: Analytics in Action
262 Tutorials in Operations Research, © 2019 INFORMS



[28] A. Cohn, S. Root, C. Kymissis, J. Esses, and N. Westmoreland. Scheduling medical residents at
Boston University School of Medicine. Interfaces 39(3):186–195, 2009.

[29] L. Dorland, C. Hardecki, B. Hess, C. McMahon, and L. A. Schneider. Cancer Infusion Therapy
Patient Handbook. Rogel Cancer Center, University of Michigan, Ann Arbor, 2018.

[30] P. C. Fuloria and S. A. Zenios. Outcomes-adjusted reimbursement in a health-care delivery system.
Management Science 47(6):735–751, 2001.

[31] J. D. Furtado. Applications of healthcare analytics in reducing hospitalization days. Unpublished
master’s thesis, Massachusetts Institute of Technology, Cambridge, 2018.

[32] K. Ghobadi, A. C. Zenteno, A. R. Marshall, P. F. Dunn, R. Levi, and J. H. Stone. Translating
a biologic revolution into an organizational overhaul. NEJM Catalyst (February 5), https://
catalyst.nejm.org/biologic-therapy-revolution-organizational-overhaul/, 2017.

[33] Y. Gocgun and M. L. Puterman. Dynamic scheduling with due dates and time windows: an ap-
plication to chemotherapy patient appointment booking. Healthcare Management Science 17(1):
60–76, 2014.

[34] J. L. Greenwald, P. R. Cronin, V. Carballo, G. Danaei, and G. Choy. A novel model for predicting
rehospitalization risk incorporating physical function, cognitive status, and psychosocial support
using natural language processing. Medical Care 55(3):261–266, 2017.

[35] M. Gruber, K. Kane, L. Flack, J. Abbotoy, J. Recchio, K. Williamson, K. Horan, and P. McCarthy.
A “perfect day” work redesign in a chemotherapy and infusion center. Oncology Nursing Forum
30(4):567–568, 2003.

[36] D. Gupta and B. Denton. Appointment scheduling in healthcare: Challenges and opportunities. IIE
Transactions 40(9):800–819, 2008.

[37] D. H. Gustafson. Length of stay: Prediction and explanation. Health Services Research 3(1):12–34,
1968.

[38] H. Harutyunyan, H. Khachatrian, D. C. Kale, and A. Galstyan. Multitask learning and bench-
marking with clinical time series data. Scientific Data 6(1):Article 96, 2019.

[39] P. A. Heidenreich, N. M. Albert, L. A. Allen, D. A. Bluemke, J. Butler, G. C. Fonarow, J. S.
Ikonomidis, et al. Forecasting the impact of heart failure in the United States: A policy statement
from the American Heart Association. Circulation: Heart Failure 6(3):606–619, 2013.

[40] J. Hiltrop. Modeling neuroscience patient flow and inpatient bed management. Unpublished
master’s thesis, Massachusetts Institute of Technology, Cambridge, 2014.

[41] R. L. Houchens, D. Ross, and A. Elixhauser. Using the HCUP national inpatient sample to estimate
trends. HCUPTechnical Report 2005-05, Healthcare Cost andUtilization Project (HCUP), Agency
for Healthcare Research and Quality, Rockville, MD, 2015.

[42] W. Hu, C. W. Chan, J. R. Zubizarreta, and G. J. Escobar. An examination of early transfers to the
ICU based on physiologic risk score. Manufacturing & Service Operations Management 20(3):
531–549, 2018.

[43] J. Q. Huang, P. M. Hooper, and T. J. Marrie. Factors associated with length of stay in hospital for
suspected community-acquired pneumonia. Canadian Respiratory Journal 13(6):317–324, 2006.

[44] P. Jaillet and M. R. Wagner. Online optimization—An introduction. J. J. Hasenbein, ed. Risk and
Optimization in an Uncertain World, INFORMS TutORials in Operations Research. INFORMS,
Hanover, MD, 142–152, 2010.

[45] S. Jencks, M. V. Williams, and E. A. Coleman. Rehospitalizations among patients in the Medicare
fee-for-service program. New England Journal of Medicine 360(14):1418–1428, 2009.

[46] X. Jiang, X. Qu, and L. Davis. Using data mining to analyze patient discharge data for an urban
hospital. R. Stahlbock and S. F. Crone, eds. Proceedings of the 2010 International Conference on
Data Mining. CSREA Press, Athens, GA, 139–144, 2010

[47] M. A. Kallen, J. A. Terrell, P. Lewis-Patterson, and J. P. Hwang. Improving wait time for che-
motherapy in an outpatient clinic at a comprehensive cancer center. Journal of Oncology Practice
8(1):e1–e7, 2012.

[48] E. H. Kaplan and E. O’Keefe. Let the needles do the talking! Evaluating the New Haven needle
exchange. Interfaces 23(1):7–26, 1993.

[49] S. H. Kim, C. W. Chan, M. Olivares, and G. Escobar. ICU admission control: An empirical study of
capacity allocation and its implication for patient outcomes. Management Science 61(1):19–38,
2015.

[50] S. H. Kim, C. W. Chan, M. Olivares, and G. Escobar. Association among ICU congestion, ICU
admission decision, and patient outcomes. Critical Care Medicine 44(10):1814–1821, 2016.

Copenhaver et al.: Health System Innovation: Analytics in Action
Tutorials in Operations Research, © 2019 INFORMS 263



[51] S. P. Kim, D. Gupta, A. K. Israni, and B. L. Kasiske. Accept/decline decision module for the liver
simulated allocation model. Healthcare Management Science 18(1):35–57, 2015.

[52] E. K. Lee and M. Zaider. Operations research advances cancer therapeutics. Interfaces 38(1):5–25,
2008.

[53] E. K. Lee, F. H. Pietz, C.-H. Chen, and Y. Liu. An interactive web-based decision support system for
mass dispensing, emergency preparedness, and biosurveillance. Proceedings of the 2017 In-
ternational Conference on Digital Health. ACM, New York, 137–146, 2017.

[54] E. K. Lee, T. L. Wu, T. Senior, and J. Jose. Medical alert management: A real-time adaptive
decision support tool to reduce alert fatigue. American Medical Informatics Association Annual
Symposium, AMIA, Bethesda, MD, 845–854, 2014.

[55] I. Lennes, A. C. Zenteno Langle, M. Duk, A. Levy Carlis, M. Bloom, E. Souza, R. Levi, and D. P.
Ryan. Modeling and improving chemotherapy patient flow. Journal of Clinical Oncology 32(30,
Supplement):175, 2014.

[56] S. R. Levin, E. T. Harley, J. C. Fackler, C. U. Lehmann, J. W. Custer, D. France, and S. L. Zeger.
Real-time forecasting of pediatric intensive care unit length of stay using computerized provider
orders. Critical Care Medicine 40(11):3058–3064, 2012.

[57] W. C. Levy, D.Mozaffarian, D. T. Linker, S. C. Sutradhar, S. D. Anker, A. B. Cropp, I. Anand, et al.
The Seattle heart failure model. Circulation 113(11):1424–1433, 2006.

[58] F. Li, D. Gupta, and S. Potthoff. Improving operating room schedules. Healthcare Management
Science 19(3):261–278, 2016.

[59] V. Liu, P. Kipnis, M. K. Gould, and G. J. Escobar. Length of stay predictions: Improvements
through the use of automated laboratory and comorbidity variables. Medical Care 48(8):739–744,
2010.

[60] X. Liu, M. Hu, J. E. Helm, M. S. Lavieri, and T. A. Skolarus. Missed opportunities in preventing
hospital readmissions: Redesigning post-discharge checkup policies. Production and Operations
Management 27(12):2226–2250, 2018.

[61] M. Mahmoudi, G. Caracciolo, A. Li, H. Poustchi, R. Safavi-Sohi, M. Vasighi, R. Chiozzi, et al.
Multi-nanoparticle array and machine learning enable accurate identification of early stage cancer.
Working paper, Harvard Medical School, Boston.

[62] Massachusetts General Hospital. Hospital overview. Accessed July 10, 2019, https://www
.massgeneral.org/about/overview.aspx, 2019.

[63] M. D. McEvoy, J. P.Wanderer, A. B. King, T. M. Geiger, V. Tiwari, M. Terekhov, J. M. Ehrenfeld,
W. R. Furman, L. A. Lee, andW. S. Sandberg. A perioperative consult service results in reduction in
cost and length of stay for colorectal surgical patients: Evidence from a healthcare redesign project.
Perioperative Medicine 5(3):3–12, 2016.

[64] S. T. McNichols. Reducing intraday patient wait times through just-in-time bed assignment.
Unpublished master’s thesis, Massachusetts Institute of Technology, Cambridge, 2015.

[65] I. Mohammadi, H. Wu, A. Turkcan, Y. Toscos, and B. N. Doebbeling. Data analytics and modeling
for appointment no-show in community health centers. Journal of Primary Care & Community
Health 9(January–February):1–11, 2018.

[66] A.Morton, E. Marzban, G. Giannoulis, A. Patel, R. Aparasu, and I. A. Kakadiaris. A comparison of
supervised machine learning techniques for predicting short-term in-hospital length of stay among
diabetic patients. X. Chen, G. Qu, P. Angelov, C. Ferri, J. Lai, andM. A.Wani, eds. Proceedings of
the 13th International Conference on Machine Learning and Applications (ICMLA). IEEE, Pis-
cataway, NJ, 428–431, 2014.

[67] D. Mozaffarian, E. J. Benjamin, A. S. Go, D. K. Arnett, M. J. Blaha, M. Cushman, S. R. Das, et al.
Heart disease and stroke statistics—2016 update: A report from the American Heart Association.
Circulation 133(4):e38–e360, 2015.

[68] D. M. Negoescu, K. Bimpikis, M. L. Brandeau, and D. A. Iancu. Dynamic learning of patient
response types: An application to treating chronic diseases.Management Science 64(8):3469–3488,
2018.

[69] O. Nohadani and A. Roy. Robust optimization with time-dependent uncertainty in radiation
therapy. IISE Transactions on Healthcare Systems Engineering 7(2):81–92, 2017.

[70] C.M. O’Connor, V. Hasselblad, R. H.Mehta, G. Tasissa, R.M. Califf, M. Fiuzat, J. G. Rogers, C. V.
Leier, and L. W. Stevenson. Triage after hospitalization with advanced heart failure: The escape
(evaluation study of congestive heart failure and pulmonary artery catheterization effectiveness)
risk model and discharge score. Journal of the American College of Cardiology 55(9):872–878, 2010.

Copenhaver et al.: Health System Innovation: Analytics in Action
264 Tutorials in Operations Research, © 2019 INFORMS



[71] V. J. Patel. MGH Internal Medicine Associates: Primary care redesign. Unpublished master’s
thesis, Massachusetts Institute of Technology, 2015.

[72] W. L. Reib. Increasing patient throughput in the MGH Cancer Center Infusion Unit. Unpublished
master’s thesis, Massachusetts Institute of Technology, Cambridge, 2015.

[73] G. H. Robinson, L. E. Davis, and R. P. Leifer. Prediction of hospital length of stay. Health Services
Research 1(3):287–300, 1966.

[74] K. Safavi, T. Khaniyev, J. Zanger, A. C. Zenteno Langle, M. S. Copenhaver, B. Daily, R. Levi, and
P. Dunn. Machine learning for hospital capacity challenges: Predicting surgical discharges and
identifying opportunities for improvement. Working paper, Massachusetts General Hospital,
Boston, MA, 2019.

[75] S. Saghafian, W. J. Hopp, M. P. Van Oyen, J. S. Desmond, and S. L. Kronick. Patient streaming as
a mechanism for improving responsiveness in emergency departments. Operations Research 60(5):
1080–1097, 2012.
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